分析 (1)推導(dǎo)出CE⊥AD,CE⊥BD,由此能證明平面ACE⊥平面ABD.
(2)以C為原點,CB為x軸,CD為y軸,過C作平面BCD的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角C-AB-D的正切值.
解答 證明:(1)∵AD⊥平面BCD,CE?平面BCD,
∴CE⊥AD,
∵CB=CD,E是BD的中點,∴CE⊥BD,
∵AD∩BD=D,∴CE⊥平面ABD,
∵CE?平面ACE,∴平面ACE⊥平面ABD.
解:(2)∵CD=$\sqrt{2}$,AD=3,CB⊥CD,CB=CD,AD⊥平面BCD,
∴以C為原點,CB為x軸,CD為y軸,過C作平面BCD的垂線為z軸,建立空間直角坐標(biāo)系,
C(0,0,0),B($\sqrt{2}$,0,0),
A(0,$\sqrt{2}$,3),D(0,$\sqrt{2}$,0),
$\overrightarrow{CB}$=($\sqrt{2}$,0,0),$\overrightarrow{CD}$=(0,$\sqrt{2}$,0),$\overrightarrow{AB}$=($\sqrt{2}$,-$\sqrt{2}$,-3),$\overrightarrow{AD}$=(0,0,-3),
設(shè)平面ABC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=\sqrt{2}x-\sqrt{2}y-3z=0}\\{\overrightarrow{n}•\overrightarrow{CB}=\sqrt{2}x=0}\end{array}\right.$,取y=3$\sqrt{2}$,得$\overrightarrow{n}$=(0,3$\sqrt{2}$,-2),
設(shè)平面ABD的法向量$\overrightarrow{m}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AB}=\sqrt{2}x-\sqrt{2}y-3z=0}\\{\overrightarrow{m}•\overrightarrow{AD}=-3z=0}\end{array}\right.$,取x=1,得$\overrightarrow{m}$=(1,1,0),
設(shè)二面角C-AB-D的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3\sqrt{2}}{\sqrt{22}•\sqrt{2}}$=$\frac{3}{\sqrt{22}}$,sinθ=$\sqrt{1-(\frac{3}{\sqrt{22}})^{2}}$=$\frac{\sqrt{13}}{\sqrt{22}}$,
∴tanθ=$\frac{sinθ}{cosθ}$=$\frac{\sqrt{13}}{3}$.
∴二面角C-AB-D的正切值為$\frac{\sqrt{13}}{3}$.
點評 本題考查面面垂直的證明,考查二面角的正切值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{4e}$,$\frac{1}{e}$) | B. | ($\frac{1}{4e}$,$\frac{1}{2e}$] | C. | [$\frac{1}{e^2}$,$\frac{1}{e}$) | D. | [$\frac{1}{e^2}$,$\frac{1}{2e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
手機(jī)系統(tǒng) | 一 | 二 | 三 | 四 | 五 |
安卓系統(tǒng)(元) | 2 | 5 | 3 | 20 | 9 |
IOS系統(tǒng)(元) | 4 | 3 | 18 | 9 | 7 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
A. | 0.1% | B. | 1% | C. | 99% | D. | 99.9% |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com