17.下列說法正確的是(  )
A.?x,y∈R,若x+y≠0,則x≠1且y≠-1
B.a∈R,“$\frac{1}{a}<1$”是“a>1”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.設(shè)隨機變量X~N(1,52),若P(X<0)=P(X>a-2),則實數(shù)a的值為2

分析 判斷逆否命題的真假,可得原命題的真假;根據(jù)充要條件的定義,可判斷B;寫出原命題的否定,可判斷C;根據(jù)正態(tài)分布的對稱性,可判斷D.

解答 解:若x+y≠0,則x≠1且y≠-1的逆否命題為“若x=1,或y=-1,則x+y=0”為假命題,故原命題為假命題,故A錯誤;
“$\frac{1}{a}<1$”?“a<0,或a>1”,故“$\frac{1}{a}<1$”是“a>1”的必要不充分條件,故B正確;
命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3≥0”,故C錯誤;
設(shè)隨機變量X~N(1,52),若P(X≤0)=P(X>a-2),則a-2=2,則實數(shù)a的值為4,故D錯誤;
故選:B.

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,充要條件,命題的否定,正態(tài)分布等知識點,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等比數(shù)列{an}的前n項和為Sn,已知a2a5=2a3,且a4與2a7的等差中項為$\frac{5}{4}$,則S4=( 。
A.29B.30C.33D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短軸長為2,離心率為$\frac{{2\sqrt{5}}}{5}$,拋物線G:y2=2px(p>0)的焦點F與橢圓E的右焦點重合,若斜率為k的直線l過拋物線G的焦點F與橢圓E相交于A,B兩點,與拋物線G相交于C,D兩點.
(Ⅰ)求橢圓E及拋物線G的方程;
(Ⅱ)是否存在實數(shù)λ,使得$\frac{1}{{|{AB}|}}+\frac{λ}{{|{CD}|}}$為常數(shù)?若存在,求出λ的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將正整數(shù)12分解成兩個正整數(shù)的乘積有1×12,2×6,3×4三種,其中3×4是這三種分解中兩數(shù)差的絕對值最小的,我們稱3×4為12的最佳分解.當(dāng)p×q(p≤q且pq∈N*,)是正整數(shù)n的最佳分解時,我們定義函數(shù)f(n)=q-p,例如f(12)=4-3=1.?dāng)?shù)列{f(3n)}的前100項和為350-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知m∈R,命題p:對任意實數(shù)x,不等式x2-2x-1≥m2-3m恒成立,若¬p為真命題,則m的取值范圍是(-∞,1)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.大數(shù)據(jù)時代出現(xiàn)了滴滴打車服務(wù),二胎政策的放開使得家庭中有兩個小孩的現(xiàn)象普遍存在,某城市關(guān)系要好的A,B,C,D四個家庭各有兩個小孩共8人,準(zhǔn)備使用滴滴打車軟件,分乘甲、乙兩輛汽車出去游玩,每車限坐4名(乘同一輛車的4名小孩不考慮位置),其中A戶家庭的孿生姐妹需乘同一輛車,則乘坐甲車的4名小孩恰有2名來自于同一個家庭的乘坐方式共有(  )
A.18種B.24種C.36種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.閱讀下邊的程序框圖,運行相應(yīng)的程序,若輸出S的值為16,則輸入m的值可以為( 。
A.4B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若集合A={x|log4x≤$\frac{1}{2}$},B={x|(x+3)( x-1)≥0},則A∩(∁RB)=( 。
A.(0,1]B.(0,1)C.[1,2]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知F1(-1,0),F(xiàn)2(1,0)是橢圓C的兩個焦點,過F2且垂直x軸的直線交C于A,B兩點,且|AB|=3,則C的方程為( 。
A.$\frac{x^2}{2}$+y2=1B.$\frac{x^2}{3}$+$\frac{y^2}{2}$=1C.$\frac{x^2}{4}$+$\frac{y^2}{3}$=1D.$\frac{x^2}{5}$+$\frac{y^2}{4}$=1

查看答案和解析>>

同步練習(xí)冊答案