分析 橢圓焦點在x軸上,設橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),由題意可得2a=6,2c=4,可得a,c,由a2=b2+c2,可求得b,進而得到橢圓方程.
解答 解:由橢圓的焦點在x軸上,設橢圓方程為$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0),
由題意可得2a=6,2c=4,
∴a=3,c=2,
由a2=b2+c2,
∴b2=5,
橢圓的方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$,
故答案為:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$.
點評 本題考查橢圓的標準方程的求法,解題時要認真審題,注意橢圓性質的合理運用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [2+$\sqrt{2}$,8] | B. | [2+$\sqrt{2}$,+∞) | C. | [2,+∞) | D. | [2+$\sqrt{2}$,4$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com