8.某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級如表:
質(zhì)量指標(biāo)值mm<185185≤m<205M≥205
等級三等品二等品一等品
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查的數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)這種產(chǎn)品符合“一、二等品至少要占到全部產(chǎn)品的92%的規(guī)定”?
(2)在樣本中,按產(chǎn)品等級用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品的質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(218,140),則“質(zhì)量提升月”活動后的質(zhì)量指標(biāo)值的均值比活動前大約提升了多少?

分析 (1)根據(jù)抽樣調(diào)查數(shù)據(jù)計算一、二等品所占比例的估計值,
判斷該企業(yè)生產(chǎn)的這種產(chǎn)品是否符合“一、二等品至少要占到全部產(chǎn)品的92%的規(guī)定”;
(2)由頻率分布直方圖知一、二、三等品的頻率值,
計算樣本中一等品、二等品、三等品的件數(shù),
求出從這8件產(chǎn)品中隨機抽取4件,一、二、三等品都有的情形,計算所求的概率值;
(3)計算“質(zhì)量提升月”活動前、后產(chǎn)品質(zhì)量指標(biāo)值的均值,比較得出結(jié)論.

解答 解:(1)根據(jù)抽樣調(diào)查數(shù)據(jù),一、二等品所占比例的估計值為
0.200+0.300+0.260+0.090+0.025=0.875,
由于該估計值小于0.92,故不能認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品
符合“一、二等品至少要占到全部產(chǎn)品的92%的規(guī)定”;
(2)由頻率分布直方圖知,一、二、三等品的頻率分別為0.375、0.5和0.125,
故在樣本中,一等品3件,二等品4件,三等品1件;
再從這8件產(chǎn)品中隨機抽取4件,一、二、三等品都有的情形有2種,
①一等品2件,二等品1件,三等品1件;
②一等品1件,二等品2件,三等品1件,
故所求的概率為P=$\frac{{C}_{3}^{2}{•C}_{4}^{1}{•C}_{1}^{1}{+C}_{3}^{1}{•C}_{4}^{2}{•C}_{1}^{1}}{{C}_{8}^{4}}$=$\frac{3}{7}$;
(3)“質(zhì)量提升月”活動前,該企業(yè)這種產(chǎn)品的質(zhì)量指標(biāo)值的均值約為
170×0.025+180×0.1+190×0.2+200×0.3+210×0.26+220×0.09+230×0.025=200.4;
“質(zhì)量提升月”活動后,產(chǎn)品質(zhì)量指標(biāo)值X近似滿足X~N(218,140),
則數(shù)學(xué)期望E(X)=218;
所以“質(zhì)量提升月”活動后的質(zhì)量指標(biāo)值的均值比活動前大約提升了
218-200.4=17.6.

點評 本題考查了頻率分布直方圖與古典概型的概率計算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.為了了解甲、乙兩所學(xué)校全體高三年級學(xué)生在該地區(qū)八校聯(lián)考中的數(shù)學(xué)成績情況,從兩校各隨機抽取60名學(xué)生,將所得樣本作出頻數(shù)分布統(tǒng)計表如下:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)25910
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)141064
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)24816
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)15663
以抽樣所得樣本數(shù)據(jù)估計總體
(1)比較甲、乙兩校學(xué)生的數(shù)學(xué)平均成績的高低;
(2)若規(guī)定數(shù)學(xué)成績不低于120分為優(yōu)秀,從甲、乙兩校全體高三學(xué)生中各隨機抽取2人,其中數(shù)學(xué)成績?yōu)閮?yōu)秀的共X人,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某地區(qū)擬建立一個藝術(shù)搏物館,采取競標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進入最后的招標(biāo).現(xiàn)從建筑設(shè)計院聘請專家設(shè)計了一個招標(biāo)方案:兩家公司從6個招標(biāo)總是中隨機抽取3個總題,已知這6個招標(biāo)問題中,甲公司可正確回答其中4道題目,而乙公司能正面回答每道題目的概率均為$\frac{2}{3}$,甲、乙兩家公司對每題的回答都是相獨立,互不影響的.
(1)求甲、乙兩家公司共答對2道題目的概率;
(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標(biāo)成功的可能性更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若f(x)+${∫}_{0}^{1}$f(x)dx=x,則${∫}_{0}^{1}$f(x)dx=( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,-2≤x≤0}\\{f(x-1)+1,0<x≤2}\end{array}\right.$,則方程5[x-f(x)]=1在[-2,2]上的根的個數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等差數(shù)列{an}中,a7+a9=16,a4=2,則a12=(  )
A.10B.14C.15D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知O為△ABC的外心,角A、B、C的對邊分別為a、b、c.
(1)若5$\overrightarrow{OA}$+4$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,求cos∠BOC的值;
(2)若$\overrightarrow{CO}$•$\overrightarrow{AB}$=$\overrightarrow{BO}$•$\overrightarrow{CA}$,求$\frac{^{2}+{c}^{2}}{{a}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(x-2)ex-$\frac{a}{2}$x2,其中a∈R,e為自然對數(shù)的底數(shù)
(Ⅰ)函數(shù)f(x)的圖象能否與x軸相切?若能與x軸相切,求實數(shù)a的值;否則,請說明理由;
(Ⅱ)若函數(shù)y=f(x)+2x在R上單調(diào)遞增,求實數(shù)a能取到的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,角A,B,C所對的邊分別為a,b,c,若acosA=bsinb,且$B>\frac{π}{2}$,則sinA+sinC的最大值是$\frac{9}{8}$.

查看答案和解析>>

同步練習(xí)冊答案