【題目】已知函數(shù)f(x)=x3+x2+x(0<a<1,x∈R).若對(duì)于任意的三個(gè)實(shí)數(shù)x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求實(shí)數(shù)a的取值范圍.
【答案】見(jiàn)解析
【解析】解 因?yàn)閒′(x)=x2+x+= (x+a-2),所以令f′(x)=0,
解得x1=,x2=2-a.
由0<a<1,知1<2-a<2.
所以令f′(x)>0,得x<,或x>2-a;
令f′(x)<0,得<x<2-a,
所以函數(shù)f(x)在(1,2-a)上單調(diào)遞減,在(2-a,2)上單調(diào)遞增.
所以函數(shù)f(x)在[1,2]上的最小值為f(2-a)= (2-a)2,最大值為max{f(1),f(2)}=max.
因?yàn)楫?dāng)0<a≤時(shí),-≥a;
當(dāng)<a<1時(shí),a>-,
由對(duì)任意x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,得2f(x)min>f(x)max(x∈[1,2]).
所以當(dāng)0<a≤時(shí),必有2× (2-a)2>-,
結(jié)合0<a≤可解得1-<a≤;
當(dāng)<a<1時(shí),必有2× (2-a)2>a,
結(jié)合<a<1可解得<a<2-.
綜上,知所求實(shí)數(shù)a的取值范圍是1-<a<2-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,算得
,,,.
(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線(xiàn)性回歸方程;
(2)判斷變量與之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
其中,為樣本平均值,線(xiàn)性回歸方程也可寫(xiě)為
附:線(xiàn)性回歸方程中,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3-3ax+e,g(x)=1-lnx,其中e為自然對(duì)數(shù)的底數(shù).
(I)若曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)l:x+2y=0垂直,求實(shí)數(shù)a的值;
(II)設(shè)函數(shù)F(x)=-x[g(x)+x-2],若F(x)在區(qū)間(m,m+1)(m∈Z)內(nèi)存在唯一的極值點(diǎn),求m的值;
(III)用max{m,n}表示m,n中的較大者,記函數(shù)h(x)=max{f(x),g(x)}(x>0). 若函數(shù)h(x)在(0,+∞)上恰有2個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是定義在 上的偶函數(shù),當(dāng)時(shí), ).
(1)當(dāng)時(shí),求的解析式;
(2)若,試判斷的上單調(diào)性,并證明你的結(jié)論;
(3)是否存在,使得當(dāng)時(shí), 有最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,A是拋物線(xiàn)上橫坐標(biāo)為4,且位于x軸上方的點(diǎn),A到拋物線(xiàn)準(zhǔn)線(xiàn)的距離等于5,過(guò)A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M.
(1)求拋物線(xiàn)的方程;
(2)以M為圓心,MB為半徑作圓M,當(dāng)K(m,0)是x軸上一動(dòng)點(diǎn)時(shí),討論直線(xiàn)AK與圓M的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C的圓心為原點(diǎn),且與直線(xiàn) 相切.
(1)求圓C的方程;
(2)點(diǎn)在直線(xiàn)上,過(guò)點(diǎn)引圓C的兩條切線(xiàn), ,切點(diǎn)為, ,求證:直線(xiàn)恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面幾種推理是合情推理的是
①由圓的性質(zhì)類(lèi)比出球的有關(guān)性質(zhì);②由直角三角形、等腰三角形、等邊三角形的內(nèi)角和是180°,歸納出所有三角形的內(nèi)角和都是180°;③教室內(nèi)有一把椅子壞了,則該教室內(nèi)的所有椅子都?jí)牧?④三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得出凸多邊形的內(nèi)角和是(n-2)·180°___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求函數(shù)的解析式;
(2)設(shè)函數(shù),若對(duì)任意的,總存在唯一的(為自然對(duì)數(shù)的底數(shù))使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2S△ABC=·.
(1)求角B的大小;
(2)若b=2,求a+c的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com