【題目】某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶(hù)每月用水量不超過(guò)4噸時(shí),每噸為2元;當(dāng)用水量超4噸時(shí),超過(guò)部分每噸為3元.八月甲、乙兩用戶(hù)共交水費(fèi)元,已知甲、乙兩用戶(hù)月用水量分別為噸、噸.

(1)求關(guān)于的函數(shù);

(2)若甲、乙兩用戶(hù)八月共交34元,分別求甲、乙兩用戶(hù)八月的用水量和水費(fèi).

【答案】(1)

(2)甲、乙兩用戶(hù)八月的用水量分別為 ,水費(fèi)分別為20元、14元

【解析】

1)對(duì)甲、乙兩用戶(hù)用水情況分3種情況考慮,甲不超過(guò)4噸;甲超過(guò)4噸、乙不超過(guò)4噸;甲超過(guò)4噸、乙也超過(guò)4噸;從得到關(guān)于的函數(shù)表達(dá)式;

2)由(1)得到的分段函數(shù),討論各段函數(shù)值為34時(shí),從而求得,再進(jìn)一步求得甲、乙各自的用水量和水費(fèi).

1)由題意得:

①甲不超過(guò)4噸,則乙也必定不超過(guò)4噸,

所以,即時(shí),

②甲超過(guò)4噸、乙不超過(guò)4噸,

所以時(shí),

③甲超過(guò)4噸、乙也超過(guò)4噸,

所以時(shí),

綜上所述:

2)當(dāng)時(shí),(舍);

當(dāng)時(shí),(舍),

當(dāng)時(shí),,

甲、乙用水分別,,

設(shè)甲、乙的水費(fèi)分別,

,

甲、乙兩用戶(hù)八月的用水量分別為 ,水費(fèi)分別為20元、14元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知多面體,,均垂直于平面,,

(1)證明:⊥平面

(2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

判斷的奇偶性,并作出函數(shù)的圖像;

關(guān)于的方程恰有個(gè)不同的實(shí)數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為奇函數(shù),為常數(shù).

1)求證:上的增函數(shù);

2)若對(duì)于區(qū)間上的每一個(gè)值,不等式恒成立,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解學(xué)生考試時(shí)的緊張程度,現(xiàn)對(duì)100名同學(xué)進(jìn)行評(píng)估,打分區(qū)間為,得到頻率分布直方圖如下,其中成等差數(shù)列,且.

(1)求的值;

(2)現(xiàn)采用分層抽樣的方式從緊張度值在中共抽取5名同學(xué),再?gòu)倪@5名同學(xué)中隨機(jī)抽取2人,求至少有一名同學(xué)是緊張度值在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,既沒(méi)有對(duì)稱(chēng)中心,也沒(méi)有對(duì)稱(chēng)軸的有(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《最強(qiáng)大腦》是江蘇衛(wèi)視引進(jìn)德國(guó)節(jié)目《SuperBrain》而推出的大型科學(xué)競(jìng)技真人秀節(jié)目.節(jié)目籌備組透露挑選選手的方式:不但要對(duì)空間感知、照相式記憶進(jìn)行考核,而且要讓選手經(jīng)過(guò)名校最權(quán)威的腦力測(cè)試,120分以上才有機(jī)會(huì)入圍.某重點(diǎn)高校準(zhǔn)備調(diào)查腦力測(cè)試成績(jī)是否與性別有關(guān),在該高校隨機(jī)抽取男、女學(xué)生各100名,然后對(duì)這200名學(xué)生進(jìn)行腦力測(cè)試.規(guī)定:分?jǐn)?shù)不小于120分為“入圍學(xué)生”,分?jǐn)?shù)小于120分為“未入圍學(xué)生”.已知男生入圍24人,女生未入圍80.

1)根據(jù)題意,填寫(xiě)下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有以上的把握認(rèn)為腦力測(cè)試后是否為“入圍學(xué)生”與性別有關(guān);

性別

入圍人數(shù)

未入圍人數(shù)

總計(jì)

男生

24

女生

80

總計(jì)

2)用分層抽樣的方法從“入圍學(xué)生”中隨機(jī)抽取11名學(xué)生,然后再?gòu)倪@11名學(xué)生中抽取3名參加某期《最強(qiáng)大腦》,設(shè)抽到的3名學(xué)生中女生的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù)).

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)若關(guān)于的不等式在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)為橢圓上的動(dòng)點(diǎn),若的最大值和最小值分別為.

(I)求橢圓的方程

(Ⅱ)設(shè)不過(guò)原點(diǎn)的直線與橢圓 交于兩點(diǎn),若直線的斜率依次成等比數(shù)列,求面積的最大值

查看答案和解析>>

同步練習(xí)冊(cè)答案