【題目】如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G為線段AD上的任意一點.
(1)若M是線段EF的中點,證明:平面AMG⊥平面BDF;
(2)若N為線段EF上任意一點,設(shè)直線AN與平面ABF,平面BDF所成角分別是α,β,求 的取值范圍.

【答案】
(1)證明:設(shè)AC∩BD=O,連結(jié)OF,OM,

由已知得AO=1,AF=1,

∴四邊形AFMO是正方形,∴AM⊥OF,

又∵正方形ABCD和矩形ACEF所在平面互相垂直,交線是CA,DB⊥CA,

∴DB⊥平面ACEF,又AM平面ACEF,∴DB⊥AM,

∵BD∩OF=O,∴AM⊥平面BDF,

∵AM平面AMG,∴平面AMG⊥平面BDF


(2)解:∵正方形ABCD和矩形ACEF所在平面互相垂直,交線是CA,EC⊥CA,

∴EC⊥平面ABCD,∴CD、CB、CE兩兩垂直,

分別以CD、CB、CE為x,y,z軸建立坐標(biāo)系,

則平面ABF的法向量 =(0,1,0),

由(1)得平面BDF的法向量 = =(﹣ ,﹣ ,1),

由N為線段EF上任意一點,

設(shè) = = =λ( ),(λ∈[0,1]),

=((λ﹣1) ,(λ﹣1) ,1),

∴sinα= = =

∵λ∈[0,1],∴ = =1﹣ ∈[0, ].


【解析】(1)設(shè)AC∩BD=O,連結(jié)OF,OM,推導(dǎo)出AM⊥OF,DB⊥CA,從而DB⊥平面ACEF,進(jìn)而DB⊥AM,AM⊥平面BDF,由此能證明平面AMG⊥平面BDF.(2)分別以CD、CB、CE為x,y,z軸建立坐標(biāo)系,利用向量法能求出 的取值范圍.
【考點精析】利用平面與平面垂直的判定對題目進(jìn)行判斷即可得到答案,需要熟知一個平面過另一個平面的垂線,則這兩個平面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知扇形的圓心角是α,半徑為R,弧長為l.

(1)若α=75°,R=12 cm,求扇形的弧長l和面積;

(2)若扇形的周長為20 cm,當(dāng)扇形的圓心角α為多少弧度時,這個扇形的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的頂點為原點,焦點為F(1,0),過焦點的直線與拋物線交于A,B兩點,過AB的中點M作準(zhǔn)線的垂線與拋物線交于點P,若|AB|=6,則點P的坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的高二(1)班男同學(xué)有名,女同學(xué)有名,老師按照分層抽樣的方法組建了一個人的課外興趣小組.

1)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);

2)經(jīng)過一個月的學(xué)習(xí)、討論,這個興趣小組決定選出兩名同學(xué)做某項實驗,方法是先從小組里選出名同學(xué)做實驗,該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實驗,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直角梯形ACDE與等腰直角三角形ABC所在平面互相垂直,F為BC的中點,, ,.

(1)求證:平面平面;

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在政府部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,新上了把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品的項目.經(jīng)測算,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似的表示為:,且每處理一噸二氧化碳可得到能利用的化工產(chǎn)品價值為200元,若該項目不獲利,政府將補(bǔ)貼.

(I)當(dāng)時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項目不虧損;

(II)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某玩具生產(chǎn)公司每天計劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共 個,生產(chǎn)一個衛(wèi)兵需 分鐘,生產(chǎn)一個騎兵需 分鐘,生產(chǎn)一個傘兵需 分鐘,已知總生產(chǎn)時間不超過 小時,若生產(chǎn)一個衛(wèi)兵可獲利潤 元,生產(chǎn)一個騎兵可獲利潤 元,生產(chǎn)一個傘兵可獲利潤 元.

(1)用每天生產(chǎn)的衛(wèi)兵個數(shù) 與騎兵個數(shù) 表示每天的利潤 (元);
(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點,側(cè)面PAD⊥底面ABCD.

(1)求證:EF∥平面PAD;

(2)若EF⊥PC,求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考查兩個變量之間的線性關(guān)系,甲、乙兩位同學(xué)各自獨立作了次和次試驗,并且利用線性回歸方法,求得回歸直線分別為、,已知兩人得的試驗數(shù)據(jù)中,變量的數(shù)據(jù)的平均值都相等,且分別都是,那么下列說法正確的是( )

A. 直線一定有公共點 B. 必有直線

C. 直線相交,但交點不一定是 D. 必定重合

查看答案和解析>>

同步練習(xí)冊答案