【題目】已知拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)為F(1,0),過焦點(diǎn)的直線與拋物線交于A,B兩點(diǎn),過AB的中點(diǎn)M作準(zhǔn)線的垂線與拋物線交于點(diǎn)P,若|AB|=6,則點(diǎn)P的坐標(biāo)為 .
【答案】( , )
【解析】解:拋物線的頂點(diǎn)為原點(diǎn),焦點(diǎn)為F(1,0),可得拋物線為:y2=4x,p=2, 過焦點(diǎn)的直線與拋物線交于A,B兩點(diǎn),過AB的中點(diǎn)M作準(zhǔn)線的垂線與拋物線交于點(diǎn)P,|AB|=6,
設(shè)A(x1 , y1),B(x2 , y2),|AB|=6=x1+x2+p
可得x1+x2=4.
過焦點(diǎn)的直線設(shè)為y=k(x﹣1),則: ,
可得k2x2﹣(2k2+4)x+k2=0,
x1+x2= =4,解得k= ,
y1+y2= (x1+x2﹣2)= ,
中點(diǎn)的縱坐標(biāo)為: ,
代入拋物線方程可得:x= .
則點(diǎn)P的坐標(biāo)為:( , ).
所以答案是:( , ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=loga(x+3)﹣1(a>0,且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny+1=0上,其中m,n均大于0,則 的最小值為( 。
A.2
B.4
C.8
D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》有如下問題:有上禾三秉(古代容量單位),中禾二秉,下禾一秉,實(shí)三十九斗;上禾二秉,中禾三秉,下禾一秉,實(shí)三十四斗;上禾一秉,中禾二秉,下禾三秉,實(shí)二十六斗.問上、中、下禾一秉各幾何?依上文:設(shè)上、中、下禾一秉分別為x斗、y斗、z斗,設(shè)計如圖所示的程序框圖,則輸出的x,y,z的值分別為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方體 的棱長為3,M,N分別是棱 、 上的點(diǎn),且 .
(1)證明: 四點(diǎn)共面;
(2)求幾何體 的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是正方形, 與交于點(diǎn), 底面,為的中點(diǎn).
(1).求證: 平面;
(2).求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD和矩形ACEF所在平面相互垂直,AB= ,AF=1,G為線段AD上的任意一點(diǎn).
(1)若M是線段EF的中點(diǎn),證明:平面AMG⊥平面BDF;
(2)若N為線段EF上任意一點(diǎn),設(shè)直線AN與平面ABF,平面BDF所成角分別是α,β,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1) 時,證明: ;
(2)當(dāng) 時,直線 和曲線 切于點(diǎn) ,求實(shí)數(shù) 的值;
(3)當(dāng) 時,不等式 恒成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com