已知數(shù)列
滿足:當(dāng)
(
)時(shí),
,
是數(shù)列
的前
項(xiàng)和,定義集合
是
的整數(shù)倍,
,且
,
表示集合
中元素的個(gè)數(shù),則
=
,
.
試題分析:(1)n=15時(shí),
,可k=5,帶入
的
,故
=5;
(2)試題分析:由于
(
)時(shí),
,可知數(shù)列
滿足:
,其前n項(xiàng)和
滿足:
當(dāng)
時(shí),
是奇數(shù),則
是
的整數(shù)倍;所以當(dāng)
時(shí),
的奇數(shù)項(xiàng)共有9項(xiàng),故
9;
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
若正數(shù)項(xiàng)數(shù)列
的前
項(xiàng)和為
,首項(xiàng)
,點(diǎn)
,
在曲線
上.
(1)求
,
;
(2)求數(shù)列
的通項(xiàng)公式
;
(3)設(shè)
,
表示數(shù)列
的前項(xiàng)和,若
恒成立,求
及實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)無窮數(shù)列
的首項(xiàng)
,前
項(xiàng)和為
(
),且點(diǎn)
在直線
上(
為與
無關(guān)的正實(shí)數(shù)).
(1)求證:數(shù)列
(
)為等比數(shù)列;
(2)記數(shù)列
的公比為
,數(shù)列
滿足
,設(shè)
,求數(shù)列
的前
項(xiàng)和
;
(3)若(2)中數(shù)列{Cn}的前n項(xiàng)和T
n當(dāng)
時(shí)不等式
恒成立,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)
Sn是等差數(shù)列{
an}的前
n項(xiàng)和,若
,則
=________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在等差數(shù)列{
an}中,
a1=-2 014,其前
n項(xiàng)和為
Sn,若
=2,則
S2 014的值等于( ).
A.-2 011 | B.-2 012 | C.-2 014 | D.-2 013 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)數(shù)列{
an}的各項(xiàng)均為正數(shù),前
n項(xiàng)和為
Sn,對于任意的
n∈N
+,
an,
Sn,
a成等差數(shù)列,設(shè)數(shù)列{
bn}的前
n項(xiàng)和為
Tn,且
bn=
,若對任意的實(shí)數(shù)
x∈(1,e](e是自然對數(shù)的底)和任意正整數(shù)
n,總有
Tn<
r(
r∈N
+).則
r的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列{
an}的前
n項(xiàng)和為
Sn,
a1=1,且對任意正整數(shù)
n,點(diǎn)(
an+1,
Sn)在直線3
x+2
y-3=0上.
(1)求數(shù)列{
an}的通項(xiàng)公式;
(2)是否存在實(shí)數(shù)
λ,使得數(shù)列
為等差數(shù)列?若存在,求出
λ的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比為q的等比數(shù)列,a2、a4、a6成公差為1的等差數(shù)列,則q的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)等差數(shù)列
的公差
,
,若
是
與
的等比中項(xiàng),則
=( )
查看答案和解析>>