8.已知直線l的方程為ax+2y-3=0,且a∈[-5,4],則直線l的斜率不小于1的概率為$\frac{1}{3}$.

分析 先求出直線的斜率的范圍,再根據(jù)幾何概型的概率公式計(jì)算即可.

解答 解:由ax+2y-3=0得到y(tǒng)=-$\frac{a}{2}$x+$\frac{3}{2}$,故直線的斜率為-$\frac{a}{2}$,
∵直線l的斜率不小于1,
∴-$\frac{a}{2}$≥1,即a≤-2,
∵a∈[-5,4],
∴-5≤a≤-2,
∴直線l的斜率不小于1的概率為 $\frac{-2-(-5)}{4-(-5)}$=$\frac{1}{3}$,
故答案為:$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查了幾何概型的問(wèn)題,以及直線的斜率問(wèn)題,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.Sn等差數(shù)列{an}的前n項(xiàng)和,a1>0,當(dāng)且僅當(dāng)n=10時(shí)Sn最大,則$\frac{{S}_{12}}{{a}_{12}}$的取值范圍為(-54,-21).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的右焦點(diǎn)在直線l:$\sqrt{3}$x-y-3=0上,且橢圓上任意兩個(gè)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)與橢圓上任意一點(diǎn)的連線的斜率之積為-$\frac{1}{4}$.
(1)求橢圓C的方程;
(2)若直線t經(jīng)過(guò)點(diǎn)P(1,0),且與橢圓C有兩個(gè)交點(diǎn)A,B,是否存在直線l0:x=x0(其中x0>2)使得A,B到l0的距離dA,dB滿足$\frac{d_A}{d_B}=\frac{{|{PA}|}}{{|{PB}|}}$恒成立?若存在,求出x0的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線的右支上,且|PF1|=5|PF2|,則此雙曲線的離心率的取值范圍是(  )
A.(1,$\sqrt{3}$]B.(1,$\frac{3}{2}$]C.[$\frac{3}{2}$,+∞)D.(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若函數(shù)f(x)的定義域?yàn)镽,則“函數(shù)f(x)是奇函數(shù)”是“f(0)=0”的( 。
A.必要不充分條件B.既不充分也不必要條件
C.充要條件D.充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某校高三特長(zhǎng)班的一次月考數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見(jiàn)部分如圖2,據(jù)此解答如下問(wèn)題:

(Ⅰ)求分?jǐn)?shù)在[70,80)之間的頻數(shù),并計(jì)算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分?jǐn)?shù)在[50,70)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在射擊訓(xùn)練中,某戰(zhàn)士射擊了兩次,設(shè)命題p是“第一次射擊擊中目標(biāo)”,命題q是“第二次射擊擊中目標(biāo)”,則命題“兩次射擊中至少有一次沒(méi)有擊中目標(biāo)“為真命題的充要條件是(  )
A.(¬p)∨(¬q)為真命題B.p∨(¬q)為真命題C.(¬p)∧(¬q)為真命題D.p∨q為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}2a-x,x≤0\\{log_a}x,x>0\end{array}\right.$(a>0且a≠1),若f(f(1))=1,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=sin2xcos$\frac{3π}{5}-cos2xsin\frac{3π}{5}$.
(Ⅰ)求f(x)的最小正周期和對(duì)稱軸的方程;
(Ⅱ)求f(x)在區(qū)間$[0,\frac{π}{2}]$上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案