分析 (Ⅰ)由側(cè)棱AA1⊥底面ABC,得AA1⊥AC,結(jié)合AB⊥AC,利用線面垂直的判定可得AC⊥平面ABB1A1,進(jìn)一步得到AC⊥A1D,AB=a,通過求解三角形可得AD⊥A1D,得到A1D⊥平面ADC.由線面垂直的判定可得平面A1DC⊥平面ADC;
(Ⅱ)分別以AB,AC,AA1所在直線為x,y,z軸建立空間直角坐標(biāo)系,設(shè)AB=1,求得A,D,C,A1的坐標(biāo),進(jìn)一步求出平面ABC與平面A1DC的一個(gè)法向量,由兩法向量所成角的余弦值可得平面A1DC與平面ABC所成二面角的余弦值.
解答 (Ⅰ)證明:∵側(cè)棱AA1⊥底面ABC,∴AA1⊥AC,
又∵AB⊥AC,AB∩AC=A,∴AC⊥平面ABB1A1,
∵A1D?平面ABB1A1,∴AC⊥A1D,
設(shè)AB=a,由$AB=AC=\frac{1}{2}A{A_1}$,AB⊥AC,D是棱BB1的中點(diǎn).
得$AD={A_1}D=\sqrt{2}a$,AA1=2a,
則$A{D^2}+{A_1}{D^2}=2{a^2}$+$2{a}^{2}=4{a}^{2}=A{{A}_{1}}^{2}$,
∴AD⊥A1D,
∵AD∩AC=A,∴A1D⊥平面ADC.
又∵A1D?平面A1DC,∴平面A1DC⊥平面ADC;
(Ⅱ)解:如圖所示,分別以AB,AC,AA1所在直線為x,y,z軸建立空間直角坐標(biāo)系,
不妨設(shè)AB=1,則A(0,0,0),D(1,0,1),C(0,1,0),A1(0,0,2).
顯然$\overrightarrow m=({0,0,1})$是平面ABC的一個(gè)法向量,
設(shè)平面A1DC的法向量$\overrightarrow n=({x,y,z})$,
由$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{{A_1}D}=0\\ \overrightarrow n•\overrightarrow{{A_1}C}=0\end{array}\right.$$⇒\left\{\begin{array}{l}x-z=0\\ y-2z=0\end{array}\right.$
令z=1,得平面A1DC的一個(gè)法向量$\overrightarrow n=({1,2,1})$,
∴$cos\left?{\overrightarrow m,\overrightarrow n}\right>=\frac{\overrightarrow m•\overrightarrow n}{{|{\overrightarrow m}|•|{\overrightarrow n}|}}$=$\frac{1}{{\sqrt{6}}}=\frac{{\sqrt{6}}}{6}$,
即平面A1DC與平面ABC所成二面角的余弦值為$\frac{{\sqrt{6}}}{6}$.
點(diǎn)評(píng) 本題考查線面垂直的判定和性質(zhì),考查空間想象能力和思維能力,訓(xùn)練了利用空間向量求二面角的平面角,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于原點(diǎn)對(duì)稱 | B. | 關(guān)于y軸對(duì)稱 | C. | 關(guān)于x軸對(duì)稱 | D. | 關(guān)于直線y=x對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 2 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-ln2,-\frac{1}{3}ln6]$ | B. | $(-\frac{1}{e},-\frac{ln6}{3}]$ | C. | $[\frac{1}{3}ln6,ln2)$ | D. | $[\frac{ln6}{3},\frac{2}{e})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥α,n∥α,則m∥n | B. | 若m⊥α,n⊥α,則m∥n | C. | 若m⊥n,n?α,則m⊥α | D. | 若m∥n,m∥α,則n∥α |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com