16.函數(shù)$f(x)=\frac{1}{x}{log_2}({{4^x}+1})-1$的圖象( 。
A.關(guān)于原點(diǎn)對(duì)稱B.關(guān)于y軸對(duì)稱C.關(guān)于x軸對(duì)稱D.關(guān)于直線y=x對(duì)稱

分析 根據(jù)對(duì)數(shù)運(yùn)算性質(zhì)、指數(shù)運(yùn)算性質(zhì)化簡(jiǎn)f(x),f(-x),判斷f(x)的奇偶性,即可得出結(jié)論.

解答 解:f(x)=$\frac{1}{x}$log2(4x+1)-1=log2(4x+1)${\;}^{\frac{1}{x}}$-1=log2$\frac{({4}^{x}+1)^{\frac{1}{x}}}{2}$,
f(-x)=log2$\frac{({4}^{-x}+1)^{-\frac{1}{x}}}{2}$=log2$\frac{1}{2•({4}^{-x}+1)^{\frac{1}{x}}}$=log2[$\frac{1}{2}•$($\frac{1}{{4}^{-x}+1}$)${\;}^{\frac{1}{x}}$]
=log2[$\frac{1}{2}$•($\frac{{4}^{x}}{1+{4}^{x}}$)${\;}^{\frac{1}{x}}$]=log2$\frac{2}{(1+{4}^{x})^{\frac{1}{x}}}$,
∴f(-x)=-f(x),
∴f(x)是奇函數(shù),f(x)的函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱.
故選A.

點(diǎn)評(píng) 本題考查了指數(shù)運(yùn)算性質(zhì),對(duì)數(shù)運(yùn)算性質(zhì),函數(shù)奇偶性的判斷,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知曲線$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$,θ∈[0,2π)上一點(diǎn)P(x,y)到定點(diǎn)M(a,0),(a>0)的最小距離為$\frac{3}{4}$,則a=$\frac{11}{4}$或$\frac{\sqrt{21}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2(x-3a)+1(a>0,x∈R)
(1)求函數(shù)y=f(x)的極值;
(2)函數(shù)y=f(x)在(0,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(3)若在區(qū)間(0,+∞)上存在實(shí)數(shù)x0,使得不等式f(x0)-4a3≤0能成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知曲線C:y=sin(2x+φ)(|φ|<$\frac{π}{2}$)的一條對(duì)稱軸方程為x=$\frac{π}{6}$,曲線C向左平移θ(θ>0)個(gè)單位長(zhǎng)度,得到的曲線E的一個(gè)對(duì)稱中心為($\frac{π}{6}$,0),則|φ-θ|的最小值是( 。
A.$\frac{π}{12}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)集合A={0,-4},B={x|x2+2(a+1)x+a2-1=0,x∈R}.若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系中,直線l過定點(diǎn)(-1,0),且傾斜角為α(0<α<π),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=cosθ(ρcosθ+8).
(1)寫出l的參數(shù)方程和C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),且$|AB|=8\sqrt{10}$,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,則2x+y的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,$AB=AC=\frac{1}{2}A{A_1}$,AB⊥AC,D是棱BB1的中點(diǎn).
(Ⅰ)證明:平面A1DC⊥平面ADC;
(Ⅱ)求平面A1DC與平面ABC所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)復(fù)數(shù)z滿足(1+i)z=-2i,i為虛數(shù)單位,則z=(  )
A.-1+iB.-1-iC.1+iD.1-i

查看答案和解析>>

同步練習(xí)冊(cè)答案