已知圓x2+y2+2x-2y+a=0截直線x+y+2=0所得弦的長度為4,則實數(shù)a的值為
 
考點:直線與圓的位置關系
專題:直線與圓
分析:把圓的方程化為標準形式,求出弦心距,再由條件根據(jù)弦長公式求得a的值.
解答: 解:圓x2+y2+2x-2y+a=0 即 (x+1)2+(y-1)2=2-a,
故弦心距d=
|-1+1+2|
2
=
2

再由弦長公式可得 2-a=2+4,∴a=-4;
故答案為:-4.
點評:本題主要考查直線和圓的位置關系,點到直線的距離公式,弦長公式的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(Ⅰ)求{an}的通項公式;
(Ⅱ)證明:
1
a1
+
1
a2
+…+
1
an
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖由若干個相同的小立方體組成的幾何體的俯視圖,其中小立方體中的數(shù)字表示相應位置的小立方體的個數(shù),則該幾何體的左視圖為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2010ex,則f′(1)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex(x2+ax+b)的圖象在x=0處的切線方程為y=3,其中有e為自然對數(shù)的底數(shù).
(1)求a,b的值;
(2)當-2<x<t時,證明f(t)>
13
e2

(3)對于定義域為D的函數(shù)y=g(x)若存在區(qū)間[m,n]⊆D時,使得x∈[m,n]時,y=g(x)的值域是[m,n].則稱[m,n]是該函數(shù)y=g(x)的“保值區(qū)間”.設h(x)=f(x)+(x-2)ex,x∈(1,+∞),問函數(shù)y=h(x)是否存在“保值區(qū)間”?若存在,求出一個“保值區(qū)間”,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知水平放置的正△ABC,其直觀圖的面積為
6
4
a2,則△ABC的周長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:x2-
y2
3
=1的離心率為e,若p=e,則拋物線E:x2=2py的焦點F到雙曲線C的漸近線的距離為( 。
A、
3
B、1
C、
3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正△ABC的邊長為1,那么△ABC的直觀圖△A′B′C′的面積為(  )
A、
6
16
B、
6
4
C、
6
2
D、
6
32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的三視圖如圖所示,則該多面體的體積是
 

查看答案和解析>>

同步練習冊答案