19.已知函數(shù)$f(x)=\frac{{\sqrt{3}}}{2}sin2x+{cos^2}x-\frac{1}{2}$,若將其圖象向左平移φ(φ>0)個(gè)單位后所得的圖象關(guān)于原點(diǎn)對稱,則φ的最小值為( 。
A.$\frac{5π}{6}$B.$\frac{7π}{12}$C.$\frac{5π}{12}$D.$\frac{π}{12}$

分析 利用三角恒等變換化簡函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得平移后所得函數(shù)的圖象對應(yīng)的解析式,再利用正弦函數(shù)的圖象的對稱性,求得φ的最小值.

解答 解:函數(shù)$f(x)=\frac{{\sqrt{3}}}{2}sin2x+{cos^2}x-\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x+$\frac{1}{2}$cos2x=sin(2x+$\frac{π}{6}$),
將其圖象向左平移φ(φ>0)個(gè)單位后,可得y=sin(2x+2φ+$\frac{π}{6}$)的圖象,
若所得的圖象關(guān)于原點(diǎn)對稱,則2φ+$\frac{π}{6}$=kπ,k∈Z,故φ的最小值為$\frac{5π}{12}$,
故選:C.

點(diǎn)評 本題主要考查三角恒等變換,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,游樂場中摩天輪勻速逆時(shí)針旋轉(zhuǎn),每轉(zhuǎn)一圈需要6min,其中心距離地面40.5m,摩天輪的半徑為40m,已知摩天輪上點(diǎn)P的起始位置在最低點(diǎn)處,在時(shí)刻t(min)時(shí)點(diǎn)P距離地面的高度為f(t)=Asin(wt+φ)+h(A>0,w>0,-π<φ<0,t≥0).
(1)求f(t)的單調(diào)區(qū)間;
(2)求證:f(t)+f(t+2)+f(t+4)是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.中國古代有計(jì)算多項(xiàng)式值的秦九韶算法,如圖是實(shí)現(xiàn)該算法的程序框圖,執(zhí)行該程序框圖,若輸入的x=3,n=2,依次輸入的a為2,2,5,則輸出的s=(  )
A.8B.17C.29D.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若集合A={x∈N|5+4x-x2>0},B={x|x<3},則A∩B等于( 。
A.(-1,3)B.{1,2}C.0,3)D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=sinxcos({x+\frac{π}{6}})+1$.
(Ⅰ)求函數(shù)f(x)的最大值及取得最大值時(shí)的x的集合;
(Ⅱ)△ABC中,a,b,c分別是A,B,C的對邊,$f(C)=\frac{5}{4},b=2,\overrightarrow{AC}•\overrightarrow{BC}=12$,求邊長c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若拋物線y=2px2(p>0)的準(zhǔn)線經(jīng)過雙曲線y2-x2=1的一個(gè)焦點(diǎn),則p=$\frac{{\sqrt{2}}}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)已知實(shí)數(shù)a,b,c滿足a+b+c=1,求a2+b2+c2的最小值;
(2)已知正數(shù)a,b,c滿足a+b+c=1,求證:$({a+\frac{1}{a}})({b+\frac{1}})({c+\frac{1}{c}})≥\frac{1000}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-2x,g(x)=alnx.
(1)討論函數(shù)y=f(x)-g(x)的單調(diào)區(qū)間
(2)設(shè)h(x)=f(x)-g(x),若對任意兩個(gè)不等的正數(shù)x1,x2,都有$\frac{{h({x_1})-h({x_2})}}{{{x_1}-{x_2}}}$>2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)g(x)=ex(x+1).
(1)求函數(shù)g(x)在(0,1)處的切線方程;
(2)設(shè)x>0,討論函數(shù)h(x)=g(x)-a(x3+x2)(a>0)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊答案