【題目】已知定義域?yàn)?/span>的奇函數(shù),滿(mǎn)足,下面四個(gè)關(guān)于函數(shù)的說(shuō)法:①存在實(shí)數(shù),使關(guān)于的方程有個(gè)不相等的實(shí)數(shù)根;②當(dāng)時(shí),恒有;③若當(dāng)時(shí),的最小值為,則;④若關(guān)于的方程和的所有實(shí)數(shù)根之和為零,則.其中說(shuō)法正確的有______.(將所有正確說(shuō)法的標(biāo)號(hào)填在橫線(xiàn)上)
【答案】①③
【解析】
根據(jù)題意,畫(huà)出函數(shù)圖像,結(jié)合函數(shù)圖像和函數(shù)性質(zhì)逐一判斷即可
結(jié)合函數(shù)為奇函數(shù),則,
當(dāng)時(shí),,,
當(dāng)時(shí),,,作出函數(shù)圖像,如圖:
對(duì)①,如圖,存在實(shí)數(shù)使得函數(shù)有7個(gè)交點(diǎn),故①對(duì);
對(duì)②,結(jié)合函數(shù)圖像,明顯函數(shù)不是嚴(yán)格的減函數(shù),故②錯(cuò);
對(duì)③,可令,如圖,兩函數(shù)相交時(shí),可求得交點(diǎn)為,要使函數(shù)最小值為1,則,③對(duì);
對(duì)④,若,令,則,令,則,
若滿(mǎn)足④的條件,則,則,故④錯(cuò);
故答案為:①③
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某游戲廠(chǎng)商對(duì)新出品的一款游戲設(shè)定了“防沉迷系統(tǒng)”,規(guī)則如下:
①3小時(shí)以?xún)?nèi)(含3小時(shí))為健康時(shí)間,玩家在這段時(shí)間內(nèi)獲得的累積經(jīng)驗(yàn)值單位:與游玩時(shí)間小時(shí))滿(mǎn)足關(guān)系式:;
②3到5小時(shí)(含5小時(shí))為疲勞時(shí)間,玩家在這段時(shí)間內(nèi)獲得的經(jīng)驗(yàn)值為即累積經(jīng)驗(yàn)值不變);
③超過(guò)5小時(shí)為不健康時(shí)間,累積經(jīng)驗(yàn)值開(kāi)始損失,損失的經(jīng)驗(yàn)值與不健康時(shí)間成正比例關(guān)系,比例系數(shù)為50.
⑴當(dāng)時(shí),寫(xiě)出累積經(jīng)驗(yàn)值E與游玩時(shí)間t的函數(shù)關(guān)系式,并求出游玩6小時(shí)的累積經(jīng)驗(yàn)值;
⑵該游戲廠(chǎng)商把累積經(jīng)驗(yàn)值E與游玩時(shí)間t的比值稱(chēng)為“玩家愉悅指數(shù)”,記作;若,且該游戲廠(chǎng)商希望在健康時(shí)間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于24,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將正整數(shù)12分解成兩個(gè)正整數(shù)的乘積有,,三種,其中是這三種分解中,兩數(shù)差的絕對(duì)值最小的,我們稱(chēng)為12的最佳分解.當(dāng)是正整數(shù)的最佳分解時(shí),我們規(guī)定函數(shù),例如.關(guān)于函數(shù)有下列敘述:①,②,③,④.其中正確的序號(hào)為 (填入所有正確的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)對(duì)定義城內(nèi)的每一個(gè)值,在其定義域內(nèi)都存在唯一的,使得成立,則稱(chēng)該函數(shù)為“函數(shù)”.
(1)判斷函數(shù)是否為“函數(shù)”,并說(shuō)明理由;
(2)若函數(shù)在定義域上為“函數(shù)”,求的取值范圍;
(3)已知函數(shù)在定義域上為“函數(shù)”.若存在實(shí)數(shù),使得對(duì)任意的,不等式都成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的偶函數(shù),滿(mǎn)足,當(dāng)時(shí),,若,,,則,,的大小關(guān)系為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是梯形, , , , ,側(cè)面底面.
(1)求證:平面平面;
(2)若,且三棱錐的體積為,求側(cè)面的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的右焦點(diǎn)為,且短軸長(zhǎng)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)為橢圓與軸正半軸的交點(diǎn),是否存在直線(xiàn),使得交橢圓于兩點(diǎn),且恰是的垂心?若存在,求的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,,是的中點(diǎn).
(1)證明:;
(2)若,求二面角平面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com