【題目】函數(shù)f(x)=sin(wx+)(w>0,)的最小正周期是π,若將該函數(shù)的圖象向右平移個(gè)單位后得到的函數(shù)圖象關(guān)于直線x=對(duì)稱,則函數(shù)f(x)的解析式為(

A.f(x)=sin(2x+)B.f(x)=sin(2x-)

C.f(x)=sin(2x+)D.f(x)=sin(2x-)

【答案】D

【解析】

由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對(duì)稱,得到 ,由此求得滿足條件的的值,即可求得答案.

由函數(shù)的周期求得,再由平移后的函數(shù)圖像關(guān)于直線對(duì)稱,得到,由此求得滿足條件的的值,即可求得答案.

因?yàn)楹瘮?shù)的最小正周期是,

所以,解得所以,

將該函數(shù)的圖像向右平移個(gè)單位后,

得到圖像所對(duì)應(yīng)的函數(shù)解析式為,

由此函數(shù)圖像關(guān)于直線對(duì)稱,得:

,,

,滿足,

所以函數(shù)的解析式為,故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),直線經(jīng)過點(diǎn)且傾斜角為.

1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;

2)已知直線與曲線交于,滿足的中點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求證:函數(shù)是偶函數(shù);

(2)設(shè)求關(guān)于的函數(shù)時(shí)的值域的表達(dá)式;

(3)若關(guān)于的不等式時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全國大學(xué)生機(jī)器人大賽是由共青團(tuán)中央,全國學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機(jī)器人項(xiàng)目,是全球獨(dú)創(chuàng)的機(jī)器人競技平臺(tái).全國大學(xué)生機(jī)器人大賽比拼的是參賽選手們的能力,堅(jiān)持和態(tài)度,展現(xiàn)的是個(gè)人實(shí)力以及整個(gè)團(tuán)隊(duì)的力量.2015賽季共吸引全國240余支機(jī)器人戰(zhàn)隊(duì)踴躍報(bào)名,這些參賽戰(zhàn)隊(duì)來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴(yán)格篩選,最終由111支機(jī)器人戰(zhàn)隊(duì)參與到2015年全國大學(xué)生機(jī)器人大賽的激烈角逐之中,某大學(xué)共有“機(jī)器人”興趣團(tuán)隊(duì)1000個(gè),大一、大二、大三、大四分別有100,200,300,400個(gè),為挑選優(yōu)秀團(tuán)隊(duì),現(xiàn)用分層抽樣的方法,從以上團(tuán)隊(duì)中抽取20個(gè)團(tuán)隊(duì).

(1)應(yīng)從大三抽取多少個(gè)團(tuán)隊(duì)?

(2)將20個(gè)團(tuán)隊(duì)分為甲、乙兩組,每組10個(gè)團(tuán)隊(duì),進(jìn)行理論和實(shí)踐操作考試(共150分),甲、乙兩組的分?jǐn)?shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強(qiáng)化訓(xùn)練,備戰(zhàn)機(jī)器人大賽.

(i)從統(tǒng)計(jì)學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

(ii)從乙組中不低于140分的團(tuán)隊(duì)中任取兩個(gè)團(tuán)隊(duì),求至少有一個(gè)團(tuán)隊(duì)為144分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,,,的中點(diǎn),沿折起,使得點(diǎn)到點(diǎn)位置,且,的中點(diǎn),上的動(dòng)點(diǎn)(與點(diǎn),不重合).

)證明:平面平面垂直;

)是否存在點(diǎn),使得二面角的余弦值?若存在,確定點(diǎn)位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩種樹苗中各抽測了10株樹苗的高度,其莖葉圖如圖.根據(jù)莖葉圖,下列描述正確的是(

A.甲種樹苗的平均高度大于乙種樹苗的平均高度,且甲種樹苗比乙種樹苗長得整齊

B.甲種樹苗的平均高度大于乙種樹苗的平均高度,但乙種樹苗比甲種樹苗長得整齊

C.乙種樹苗的平均高度大于甲種樹苗的平均高度,且乙種樹苗比甲種樹苗長得整齊

D.乙種樹苗的平均高度大于甲種樹苗的平均高度,但甲種樹苗比乙種樹苗長得整齊

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某歌手大賽進(jìn)行電視直播,比賽現(xiàn)場有6名特約嘉賓給每位參賽選手評(píng)分,場內(nèi)外的觀眾可以通過網(wǎng)絡(luò)平臺(tái)給每位參賽選手評(píng)分.某選手參加比賽后,現(xiàn)場嘉賓評(píng)分情況如下表;場內(nèi)外共有數(shù)萬名觀眾參與了評(píng)分,組織方將觀眾評(píng)分按照,,分組,繪成頻率分布直方圖如下:

嘉賓

評(píng)分

96

95

96

89

97

98

1)從觀眾中任取三人,求這三人中恰有1人分?jǐn)?shù)在2人分?jǐn)?shù)在的概率;

2)從嘉賓中隨機(jī)選3人,記3人中分?jǐn)?shù)不低于96分的人數(shù)為,求的期望;

3)嘉賓評(píng)分的平均數(shù)為,場內(nèi)外的觀眾評(píng)分的平均數(shù)為,試寫出的大小關(guān)系(不需要證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是橢圓的左、右頂點(diǎn),為橢圓上異于、的一點(diǎn).

1是橢圓的上頂點(diǎn),且直線與直線垂直,求點(diǎn)軸的距離;

2)過點(diǎn)的直線(不過坐標(biāo)原點(diǎn))與橢圓交于、兩點(diǎn),且點(diǎn)軸上方,點(diǎn)軸下方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為,離心率為.

(1)求橢圓的方程;

(2)若動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),分別過兩點(diǎn)作,垂足分別為,且記為點(diǎn)到直線的距離, 為點(diǎn)到直線的距離,為點(diǎn)到點(diǎn)的距離,試探索是否存在最大值.若存在,求出最大值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案