【題目】

如圖,平行四邊形中,沿折起到的位置,使平面平面

)求證:;

)求三棱錐的側(cè)面積.

【答案】)證明見解析.

【解析】

試題(1)△ABD 中,∵AB=2,AD=4,∠DAB=60°,

∴BD=.

∴AB2+BD2=AD2,∴AB⊥BD.

平面EBD⊥平面ABD

平面EBD∩平面ABD=BD,AB平面ABD

∴AB⊥平面EBD. ∵DE平面EBC,∴AB⊥DE. ……5

(2)(1)AB⊥BD.

∵CD∥AB ∴CD⊥BD,從而DE⊥BD

Rt△DBE, ∵DB=2,DE=DC=AB=2,

∴SDBE=.……7

∵AB⊥平面EBD,BE平面EBD,∴AB⊥BE.

∵BE=BC=AD=4,SABE=AB·BE=4……9

∵DE⊥BD,平面EBD⊥平面ABD,∴ED⊥平面ABD,

AD平面ABD,∴ED⊥AD,∴SADE=AD·DE="4." ……11

綜上,三棱錐E—ABD的側(cè)面積S=8+2. ……12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,CMCN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的AB處設(shè)置觀景臺(tái),記BC=a,AC=b,AB=c(單位:百米)

1)若ab,c成等差數(shù)列,且公差為4,求b的值;

2)已知AB=12,記∠ABC,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】華為手機(jī)作為華為公司三大核心業(yè)務(wù)之一,2018年的銷售量躍居全球第二名.某機(jī)構(gòu)隨機(jī)選取了100名華為手機(jī)的顧客進(jìn)行調(diào)查,并將這100人的手機(jī)價(jià)格按照,…,分成7組,制成如圖所示的頻率分布直方圖.

1)若2倍,求,的值;

2)求這100名顧客手機(jī)價(jià)格的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表,精確到個(gè)位);

3)利用分層抽樣的方式從手機(jī)價(jià)格在的顧客中選取6人,并從這6人中隨機(jī)抽取2人進(jìn)行回訪,求抽取的2人手機(jī)價(jià)格在不同區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中

)已知函數(shù)為偶函數(shù),求的值;

)若,證明:當(dāng)時(shí),;

)若在區(qū)間內(nèi)有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一、高二年級(jí)的全體學(xué)生都參加了體質(zhì)健康測(cè)試,測(cè)試成績滿分為100分,規(guī)定測(cè)試成績?cè)?/span>之間為“體質(zhì)優(yōu)秀”,在之間為“體質(zhì)良好”,在之間為“體質(zhì)合格”,在之間為“體質(zhì)不合格”.現(xiàn)從這兩個(gè)年級(jí)中各隨機(jī)抽取7名學(xué)生,測(cè)試成績?nèi)缦拢?/span>

其中m,n是正整數(shù).

(Ⅰ)若該校高一年級(jí)有280學(xué)生,試估計(jì)高一年級(jí)“體質(zhì)優(yōu)秀”的學(xué)生人數(shù);

(Ⅱ)若從高一年級(jí)抽取的7名學(xué)生中隨機(jī)抽取2人,記X為抽取的2人中為“體質(zhì)良好”的學(xué)生人數(shù),求X的分布列及數(shù)學(xué)期望;

(Ⅲ)設(shè)兩個(gè)年級(jí)被抽取學(xué)生的測(cè)試成績的平均數(shù)相等,當(dāng)高二年級(jí)被抽取學(xué)生的測(cè)試成績的方差最小時(shí),寫出m,n的值.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,且在區(qū)間上是增函數(shù).

1)求實(shí)數(shù)的值組成的集合;

2)設(shè)函數(shù)的兩個(gè)極值點(diǎn)為、,試問:是否存在實(shí)數(shù),使得不等式對(duì)任意恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程.

(Ⅰ)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)若直線與曲線交于兩點(diǎn),求的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的參數(shù)方程為:為參數(shù)),的參數(shù)方程為:為參數(shù)).

1)化、的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

2)若直線的極坐標(biāo)方程為:,曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),求的中點(diǎn)到直線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn).

(。┣髮(shí)數(shù)的取值范圍;

(ⅱ)求證:.(其中的極小值點(diǎn))

查看答案和解析>>

同步練習(xí)冊(cè)答案