【題目】已知曲線的參數(shù)方程為:(為參數(shù)),的參數(shù)方程為:(為參數(shù)).
(1)化、的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若直線的極坐標方程為:,曲線上的點對應(yīng)的參數(shù),曲線上的點對應(yīng)的參數(shù),求的中點到直線的距離.
【答案】(1) :;:;以圓心為,半徑為1的圓,以坐標原點為中心,焦點在軸的橢圓;(2)
【解析】
(1)直接利用參數(shù)方程組消去參數(shù)即可得到它們的普通方程;
(2)根據(jù)已知條件分別求出、兩點坐標以及點坐標,再利用點到直線的距離公式即可求出.
(1)曲線的參數(shù)方程為:(為參數(shù)),
即,且,則
:;
的參數(shù)方程為:(為參數(shù)),
即,且,則
:;
以圓心為,半徑為1的圓,
以坐標原點為中心,焦點在軸的橢圓;
(2)曲線上的點對應(yīng)的參數(shù),
所以,
曲線上的點對應(yīng)的參數(shù),
所以,
所以的中點的坐標為,
因為直線的極坐標方程為:,
即直線的普通方程為:,
所以的中點到直線的距離
科目:高中數(shù)學 來源: 題型:
【題目】某語文報社為研究學生課外閱讀時間與語文考試中的作文分數(shù)的關(guān)系,隨機調(diào)查了本市某中學高三文科班名學生每周課外閱讀時間(單位:小時)與高三下學期期末考試中語文作文分數(shù),數(shù)據(jù)如下表:
1 | 2 | 3 | 4 | 5 | 6 | |
38 | 40 | 43 | 45 | 50 | 54 |
(1)根據(jù)上述數(shù)據(jù),求出高三學生語文作文分數(shù)與該學生每周課外閱讀時間的線性回歸方程,并預測某學生每周課外閱讀時間為小時時其語文作文成績;
(2)從這人中任選人,這人中至少有人課外閱讀時間不低于小時的概率.
參考公式:,其中,
參考數(shù)據(jù):,,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若拋物線的焦點為,是坐標原點,為拋物線上的一點,向量與軸正方向的夾角為60°,且的面積為.
(1)求拋物線的方程;
(2)若拋物線的準線與軸交于點,點在拋物線上,求當取得最大值時,直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品.現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(1)將表示為的函數(shù),求出該函數(shù)表達式;
(2)根據(jù)直方圖估計利潤不少于57萬元的概率;
(3)根據(jù)頻率分布直方圖,估計一個銷售季度內(nèi)市場需求量的平均數(shù)與中位數(shù)的大。ūA舻叫(shù)點后一位).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓的焦點為和,過的直線交于兩點,過作與軸垂直的直線,又知點,直線記為,與交于點.設(shè),已知當時,.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:無論如何變化,點的橫坐標是定值,并求出這個定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com