【題目】如圖,在四棱錐中,為正三角形,,,為線段的中點.

1)求證:平面;

2)若,,求直線與平面所成角的正弦值.

【答案】1)證明見解析(2

【解析】

1)利用中位線關系,得出//,然后再根據(jù)題意證明//,即可得出結論

2)先證明出平面,然后以為坐標原點,,,軸、軸、軸建立如圖所示的空間直角坐標系,然后計算出平面的法向量,最后,利用公式求解求解即可

1)證明:取的中點,連接,,則//.

,所以,.

,所以//.

,,

所以平面//平面.

平面,

所以//平面.

2)連接,

中點,,.

,所以.

,所以平面.

為坐標原點,,軸、軸、軸建立如圖所示的空間直角坐標系.

,,,

,.

設平面的法向量

.

設直線與平面所成角為,則

.

故直線與平面所成角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】阿爾法狗(AlphaGo)是第一個擊敗人類職業(yè)圍棋選手、第一個戰(zhàn)勝圍棋世界冠軍的人工智能程序,由谷歌(Google)公司的團隊開發(fā).其主要工作原理是“深度學習”.2017 年5 月,在中國烏鎮(zhèn)圍棋峰會上,它與排名世界第一的世界圍棋冠軍柯潔對戰(zhàn),以3 比0 的總比分獲勝.圍棋界公認阿爾法圍棋的棋力已經(jīng)超過人類職業(yè)圍棋頂尖水平.

為了激發(fā)廣大中學生對人工智能的興趣,某市教育局組織了一次全市中學生“人工智能”軟件設計競賽,從參加比賽的學生中隨機抽取了30 名學生,并把他們的比賽成績按五個等級進行了統(tǒng)計,得到如下數(shù)據(jù)表:

成績等級

成績(分)

5

4

3

2

1

人數(shù)(名)

4

6

10

7

3

(1)根據(jù)上面的統(tǒng)計數(shù)據(jù),試估計從本市參加比賽的學生中任意抽取一人,其成績等級為“”的

概率;

(2)根據(jù)(I)的結論,若從該地區(qū)參加比賽的學生(參賽人數(shù)很多)中任選3 人,記表示抽到成績等級為“”的學生人數(shù),求 的分布列及其數(shù)學期望;

(3)從這30 名學生中,隨機選取2 人,求“這兩個人的成績之差大于1分”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設置觀景臺,記BC=a,AC=bAB=c(單位:百米)

1)若a,b,c成等差數(shù)列,且公差為4,求b的值;

2)已知AB=12,記∠ABC,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, 平面, 的中點.

(1)證明: 平面

(2)已知, , 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2的正方形沿對角線折疊,使得平面平面,又平面.

(1)若,求直線與直線所成的角;

(2)若二面角的大小為,求的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,為正三角形,,,,為線段的中點.

1)求證:平面

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】華為手機作為華為公司三大核心業(yè)務之一,2018年的銷售量躍居全球第二名.某機構隨機選取了100名華為手機的顧客進行調查,并將這100人的手機價格按照,,…,分成7組,制成如圖所示的頻率分布直方圖.

1)若2倍,求,的值;

2)求這100名顧客手機價格的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表,精確到個位);

3)利用分層抽樣的方式從手機價格在的顧客中選取6人,并從這6人中隨機抽取2人進行回訪,求抽取的2人手機價格在不同區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中

)已知函數(shù)為偶函數(shù),求的值;

)若,證明:當時,;

)若在區(qū)間內有兩個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為:為參數(shù)),的參數(shù)方程為:為參數(shù)).

1)化、的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;

2)若直線的極坐標方程為:,曲線上的點對應的參數(shù),曲線上的點對應的參數(shù),求的中點到直線的距離.

查看答案和解析>>

同步練習冊答案