【題目】橢圓的焦點(diǎn)為和,過的直線交于兩點(diǎn),過作與軸垂直的直線,又知點(diǎn),直線記為,與交于點(diǎn).設(shè),已知當(dāng)時,.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:無論如何變化,點(diǎn)的橫坐標(biāo)是定值,并求出這個定值.
【答案】(Ⅰ);(Ⅱ)定值為3
【解析】
(Ⅰ)設(shè)橢圓的方程為,當(dāng)時,不妨設(shè),則,由橢圓的定義得,從而,可得點(diǎn)A在y軸上,不妨設(shè),由可得,將B代入橢圓方程即可;
(Ⅱ)設(shè)直線AB的方程為,,聯(lián)立橢圓方程可得,進(jìn)一步可得,,利用點(diǎn)斜式可得BH的方程以及直線的方程,解方程組即可.
(Ⅰ)設(shè)橢圓的方程為,其中,由已知,當(dāng)時,不妨設(shè),
則,又,所以,由橢圓的定義得,
從而,此時點(diǎn)A在y軸上,不妨設(shè),
從而由已知條件可得,解得,
故,代入橢圓方程,解得,所以,
故所求橢圓方程為.
(Ⅱ)設(shè)直線AB的方程為,,將代入橢圓
中,得,即,
,所以,
由已知,,直線BH的斜率,
所以直線BH的方程為,而直線的方程為,代入,
解得,故點(diǎn)的橫坐標(biāo)是定值3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】華為手機(jī)作為華為公司三大核心業(yè)務(wù)之一,2018年的銷售量躍居全球第二名.某機(jī)構(gòu)隨機(jī)選取了100名華為手機(jī)的顧客進(jìn)行調(diào)查,并將這100人的手機(jī)價格按照,,…,分成7組,制成如圖所示的頻率分布直方圖.
(1)若是的2倍,求,的值;
(2)求這100名顧客手機(jī)價格的平均數(shù)和中位數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中間值作代表,精確到個位);
(3)利用分層抽樣的方式從手機(jī)價格在和的顧客中選取6人,并從這6人中隨機(jī)抽取2人進(jìn)行回訪,求抽取的2人手機(jī)價格在不同區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程.
(Ⅰ)求直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于,兩點(diǎn),求的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為:(為參數(shù)),的參數(shù)方程為:(為參數(shù)).
(1)化、的參數(shù)方程為普通方程,并說明它們分別表示什么曲線;
(2)若直線的極坐標(biāo)方程為:,曲線上的點(diǎn)對應(yīng)的參數(shù),曲線上的點(diǎn)對應(yīng)的參數(shù),求的中點(diǎn)到直線的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,直線,圓的方程為,直線被圓截得的弦長與橢圓的短軸長相等,橢圓的左頂點(diǎn)為,上頂點(diǎn)為.
(1)求橢圓的方程;
(2)已知經(jīng)過點(diǎn)且斜率為直線與橢圓有兩個不同的交點(diǎn)和,請問是否存在常數(shù),使得向量與共線?如果存在,求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,ABCD為菱形,平面ABCD,連接AC,BD交于點(diǎn)O,,,E是棱PC上的動點(diǎn),連接DE.
(1)求證:平面平面;
(2)當(dāng)面積的最小值是4時,求此時點(diǎn)E到底面ABCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】去年年底,某商業(yè)集團(tuán)公司根據(jù)相關(guān)評分細(xì)則,對其所屬25家商業(yè)連鎖店進(jìn)行了考核評估.將各連鎖店的評估分?jǐn)?shù)按[60,70), [70,80), [80,90), [90,100),分成四組,其頻率分布直方圖如下圖所示,集團(tuán)公司依據(jù)評估得分,將這些連鎖店劃分為A,B,C,D四個等級,等級評定標(biāo)準(zhǔn)如下表所示.
評估得分 | [60,70) | [70,80) | [80,90) | [90,100) |
評定等級 | D | C | B | A |
(1)估計(jì)該商業(yè)集團(tuán)各連鎖店評估得分的眾數(shù)和平均數(shù);
(2)從評估分?jǐn)?shù)不小于80分的連鎖店中任選2家介紹營銷經(jīng)驗(yàn),求至少選一家A等級的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)有兩個不同的零點(diǎn).
(。┣髮(shí)數(shù)的取值范圍;
(ⅱ)求證:.(其中為的極小值點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,(為常數(shù))對于任意的恒成立.
(1)若,求的值;
(2)證明:數(shù)列是等差數(shù)列;
(3)若,關(guān)于的不等式有且僅有兩個不同的整數(shù)解,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com