【題目】已知橢圓的離心率為,直線,圓的方程為,直線被圓截得的弦長(zhǎng)與橢圓的短軸長(zhǎng)相等,橢圓的左頂點(diǎn)為,上頂點(diǎn)為.

1)求橢圓的方程;

2)已知經(jīng)過(guò)點(diǎn)且斜率為直線與橢圓有兩個(gè)不同的交點(diǎn),請(qǐng)問(wèn)是否存在常數(shù),使得向量共線?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.

【答案】12)不存在;詳見(jiàn)解析

【解析】

1)求得圓心到直線的距離,利用直線和圓相交所得弦長(zhǎng)公式列方程,解方程求得的值,結(jié)合橢圓離心率以及,求得的值,進(jìn)而求得橢圓離心率.

2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫出根于系數(shù)關(guān)系以及判別式,利用共線以及向量共線的坐標(biāo)表示列方程,由此判斷出不存在符合題意的常數(shù).

1)圓心到直線的距離為

直線被圓截得的弦長(zhǎng),.

由橢圓離心率為,結(jié)合可得,.即橢圓的方程為:.

2)設(shè)直線的方程為,

代入橢圓方程,整理,得,①

因?yàn)橹本與橢圓有兩個(gè)不同的交點(diǎn)等價(jià)于,

解得.

設(shè),則

由①得,②

,③

因?yàn)?/span>,所以.

所以共線等價(jià)于.

將②③代入上式,解得,(舍).

因?yàn)椴粷M足,

所以不存在常數(shù),使得向量共線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:上任意一點(diǎn)到兩個(gè)焦點(diǎn)的距離和為4,且離心率為

1)求橢圓的方程.

2)過(guò)作互相垂直的兩條直線分別與橢圓交于,,設(shè)中點(diǎn)為,中點(diǎn)為,試探究直線是否過(guò)定點(diǎn)?若是,求出該定點(diǎn);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的,,三個(gè)不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進(jìn)行檢測(cè):

車間

數(shù)量

50

150

100

(1)求這6件樣品中來(lái)自,,各車間產(chǎn)品的數(shù)量;

(2)若在這6件樣品中隨機(jī)抽取2件進(jìn)行進(jìn)一步檢測(cè),求這2件產(chǎn)品來(lái)自相同車間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若拋物線的焦點(diǎn)為,是坐標(biāo)原點(diǎn),為拋物線上的一點(diǎn),向量軸正方向的夾角為60°,且的面積為.

1)求拋物線的方程;

2)若拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,求當(dāng)取得最大值時(shí),直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C經(jīng)過(guò)定點(diǎn),其左右集點(diǎn)分別為,過(guò)右焦且與坐標(biāo)軸不垂直的直線l與橢圈交于PQ兩點(diǎn).

1)求橢圓C的方程:

2)若O為坐標(biāo)原點(diǎn),在線段上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的焦點(diǎn)為,過(guò)的直線兩點(diǎn),過(guò)作與軸垂直的直線,又知點(diǎn),直線記為交于點(diǎn).設(shè),已知當(dāng)時(shí),

(Ⅰ)求橢圓的方程;

(Ⅱ)求證:無(wú)論如何變化,點(diǎn)的橫坐標(biāo)是定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),離心率為.

(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)過(guò)橢圓C的右焦點(diǎn)F作直線l交橢圓CA、B兩點(diǎn),交y軸于M點(diǎn),若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著食品安全問(wèn)題逐漸引起人們的重視,有機(jī)、健康的高端綠色蔬菜越來(lái)越受到消費(fèi)者的歡迎,同時(shí)生產(chǎn)—運(yùn)輸—銷售一體化的直銷供應(yīng)模式,不僅減少了成本,而且減去了蔬菜的二次污染等問(wèn)題.

(1)在有機(jī)蔬菜的種植過(guò)程中,有機(jī)肥料使用是必不可少的.根據(jù)統(tǒng)計(jì)某種有機(jī)蔬菜的產(chǎn)量與有機(jī)肥料的用量有關(guān)系,每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量(百斤)與使用堆漚肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)如下表

使用堆漚肥料(千克)

2

4

5

6

8

產(chǎn)量的增加量(百斤)

3

4

4

4

5

依據(jù)表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;并根據(jù)所求線性回歸方程,估計(jì)如果每個(gè)有機(jī)蔬菜大棚使用堆漚肥料10千克,則每個(gè)有機(jī)蔬菜大棚產(chǎn)量增加量是多少百斤?

(2)某大棚蔬菜種植基地將采摘的有機(jī)蔬菜以每份三斤稱重并保鮮分裝,以每份10元的價(jià)格銷售到生鮮超市.“樂(lè)購(gòu)”生鮮超市以每份15元的價(jià)格賣給顧客,如果當(dāng)天前8小時(shí)賣不完,則超市通過(guò)促銷以每份5元的價(jià)格賣給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天能夠把剩余的有機(jī)蔬菜都低價(jià)處理完畢,且處理完畢后,當(dāng)天不再進(jìn)貨).該生鮮超市統(tǒng)計(jì)了100天有機(jī)蔬菜在每天的前8小時(shí)內(nèi)的銷售量(單位:份),制成如下表格(注:,且);

前8小時(shí)內(nèi)的銷售量(單位:份)

15

16

17

18

19

20

21

頻數(shù)

10

x

16

6

15

13

y

若以100天記錄的頻率作為每日前8小時(shí)銷售量發(fā)生的概率,該生鮮超市當(dāng)天銷售有機(jī)蔬菜利潤(rùn)的期望值為決策依據(jù),當(dāng)購(gòu)進(jìn)17份比購(gòu)進(jìn)18份的利潤(rùn)的期望值大時(shí),求的取值范圍.

附:回歸直線方程為,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C1x22pyp0),圓C2x2+y28y+120的圓心M到拋物線C1的準(zhǔn)線的距離為,點(diǎn)P是拋物線C1上一點(diǎn),過(guò)點(diǎn)P,M的直線交拋物線C1于另一點(diǎn)Q,且|PM|2|MQ|,過(guò)點(diǎn)P作圓C2的兩條切線,切點(diǎn)為A、B

)求拋物線C1的方程;

)求直線PQ的方程及的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案