13.如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過C點.已知AB=2米,AD=1米.
(1)設(shè)BM=x(單位:米).寫出花壇AMPN的面積為S關(guān)于x的函數(shù)關(guān)系式S=f(x);
(2)判斷S=f(x)的單調(diào)性,并用單調(diào)性定義證明,求當AM,AN的長度分別是多少時,花壇AMPN的面積最。

分析 (1)由三角形相似得到AN與x的關(guān)系,然后直接代入矩形面積公式,求出S=f(x)即可;
(2)由函數(shù)f(x)=x+$\frac{4}{x}$+4,x∈[1,3],的單調(diào)性可求得結(jié)論.

解答 解:(1)花壇AMPN的面積為S=f(x),
由 $\frac{x}{2+x}$=$\frac{1}{AN}$,∴AN=$\frac{2+x}{x}$,
∴f(x)=$\frac{{(2+x)}^{2}}{x}$(x>0).
(2)由f(x)=$\frac{{(2+x)}^{2}}{x}$(x>0),
則f(x)=x+$\frac{4}{x}$+4≥2$\sqrt{x•\frac{4}{x}}$+4=8,
當且僅當x=2時“=”成立,
∴f(x)min=f(2)=8,
即當AM=4米,AN=2米時,花壇AMPN面積最小為8平方米.

點評 本題考查了根據(jù)實際問題選擇函數(shù)模型,考查了不等式的解法,考查了函數(shù)y=x+$\frac{k}{x}$(k>0)的單調(diào)性,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.某同學對函數(shù)$f(x)=\frac{sinx}{x}$進行研究后,得出以下五個結(jié)論:
①函數(shù)y=f(x)的圖象是軸對稱圖形;
②函數(shù)y=f(x)對任意定義域中x值,恒有|f(x)|<1成立;
③函數(shù)y=f(x)的圖象與x軸有無窮多個交點,且每相鄰兩交點間距離相等;
④當常數(shù)k滿足k≠0時,函數(shù)y=f(x)的圖象與直線y=kx有且僅有一個公共點.
其中所有正確結(jié)論的序號是①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={1,2,3},B={-1,0,1},滿足條件f(3)=f(1)+f(2)的映射f:A→B的個數(shù)是(  )
A.2B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.求187與119的最大公約數(shù)結(jié)果用5進制表示32(5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=cos(2x+$\frac{2π}{3}$)+2cos2x,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{3}$個單位長度后得到函數(shù)g(x)的圖象,求函數(shù)g(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={2,4,6},集合B={1},則A∪B等于(  )
A.{1,2,4,6}B.{0,1,8,10}C.{0,8,10}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.log${\;}_{\frac{1}{2}}$|x-$\frac{π}{3}$|≥log${\;}_{\frac{1}{2}}$$\frac{π}{2}$的解集為( 。
A.{x|-$\frac{π}{6}$≤x≤$\frac{5}{6}$π}B.{x|x≤-$\frac{π}{6}$,或x≥$\frac{5}{6}$π}
C.{x|-$\frac{π}{6}$≤x≤$\frac{5}{6}$π且x≠$\frac{π}{3}$}D.{x|-$\frac{5π}{6}$≤x≤$\frac{5π}{6}$且x≠$\frac{π}{3}$}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.定義A*B,B*C,C*D,D*A的運算分別對應(yīng)下面圖中的(1),(2),(3),(4),則圖中,a,b對應(yīng)的運算是(  )
A.B*D,A*DB.B*D,A*CC.B*C,A*DD.C*D,A*D

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)①f(x)=x2;②f(x)=ex③f(x)=lnx ④f(x)=cosx.其中對于f(x)定義域內(nèi)的 任意一個xl都存在唯一的x2,使f(x1) f(x2)=l成立的函數(shù)是( 。
A.B.C.②③D.③④

查看答案和解析>>

同步練習冊答案