設(shè)函數(shù).
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[-2,2]時(shí),不等式f(x)>m恒成立,求實(shí)數(shù)m的取值范圍.
(1)的增區(qū)間,的減區(qū)間.
(2)m<0 。
解析試題分析:(1) 2分
設(shè)的增區(qū)間,
的減區(qū)間. 6分
(2)x∈[-2,2]時(shí),不等式f(x)>m恒成立
等價(jià)于>m, 8分
令:
∴x=0和x=-2,由(1)知x=-2是極大值點(diǎn),x=0為極小值點(diǎn)
∴m<0 12分
考點(diǎn):本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值,簡(jiǎn)單不等式解法。
點(diǎn)評(píng):典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問(wèn)題,(2)作為 “恒成立問(wèn)題”,轉(zhuǎn)化成求函數(shù)最值問(wèn)題。是解答成立問(wèn)題的常用解法。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(Ⅰ) 當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性.
(Ⅲ)若對(duì)任意及任意,恒有 成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/8/1b4kz3.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值;
(2)利用定義判斷函數(shù)的單調(diào)性;
(3)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
①當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
②討論函數(shù)的單調(diào)性;
③若函數(shù)在處取得極值,不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過(guò)P(1,0),且在P點(diǎn)處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(1)若在處取得極值,求的值;
(2)求的單調(diào)區(qū)間;
(3)若且,函數(shù),若對(duì)于,總存在使得,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的圖象過(guò)點(diǎn)P(0,2),且在點(diǎn)M(-1,f(-1))處的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com