在△ABC中,已知c=1,A=60°,a=
3
,則B=
 
考點(diǎn):正弦定理
專題:解三角形
分析:由正弦定理列出關(guān)系式把a(bǔ),sinA,以及c的值代入求出sinC的值,確定出C的度數(shù),即可求出B的度數(shù).
解答: 解:∵在△ABC中,已知c=1,A=60°,a=
3
,
∴由正弦定理
a
sinA
=
c
sinC
得:sinC=
csinA
a
=
3
2
3
=
1
2

∵c<a,∴C<A,
∴C=30°,
則B=90°.
故答案為:90°
點(diǎn)評(píng):此題考查了正弦定理,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn是數(shù)列{an}的前n項(xiàng)和且n∈N+,所有項(xiàng)an>0,且Sn=
1
4
a
2
n
+
1
2
an-
3
4

(1)證明:{an}是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形ABC的三邊長(zhǎng)a,b,c成等差數(shù)列,且a2+b2+c2=84,則實(shí)數(shù)b的取值范圍
是( 。
A、(0,2
7
]
B、(2
6
,2
7
]
C、(0,2
6
)
D、[2
6
,2
7
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有三個(gè)游戲規(guī)則如下,袋子中分別裝有形狀、大小相同的球,從袋中無放回地取球,
游戲1游戲2游戲3
袋中裝有3個(gè)黑球和2個(gè)白球袋中裝有2個(gè)黑球和2個(gè)白球袋中裝有3個(gè)黑球和1個(gè)白球
從袋中取出2個(gè)球從袋中取出2個(gè)球從袋中取出2個(gè)球
若取出的兩個(gè)球同色,則甲勝若取出的兩個(gè)球同色,則甲勝若取出的兩個(gè)球同色,則甲勝
若取出的兩個(gè)球不同色,則乙勝若取出的兩個(gè)球不同色,則乙勝若取出的兩個(gè)球不同色,則乙勝
問其中不公平的游戲是( 。
A、游戲2
B、游戲3
C、游戲1和游戲2
D、游戲1和游戲3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+(a-1)x-1,有且僅有一個(gè)零點(diǎn)的充要條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一條直線的傾斜角范圍是[0,
π
3
]∪[
4
,π),則這條直線的斜率范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={2,4,6,8},N={1,2},P={x|x=
a
b
,a∈M,b∈N}
,則集合P的真子集的個(gè)數(shù)為( 。
A、4B、6C、15D、63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P(-
3
,m)是角θ終邊上一點(diǎn),且sinθ=
3
3
,則m的值為( 。
A、
6
2
B、±
6
2
C、
6
3
D、±
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)箱子里裝有5個(gè)大小相同的球,有3個(gè)白球,2個(gè)紅球,從中摸出2個(gè)球.
(1)求摸出的兩個(gè)球中有1個(gè)白球和一個(gè)紅球的概率;
(2)用ξ表示摸出的兩個(gè)球中的白球個(gè)數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案