分析 (Ⅰ)根據(jù)雙曲線的性質(zhì),求出a,b即可求雙曲線C的方程;
(Ⅱ)根據(jù)直線與雙曲線的位置關(guān)系,求出中點(diǎn)坐標(biāo),結(jié)合中點(diǎn)坐標(biāo)在圓上的關(guān)系進(jìn)行求解即可.
解答 解:(Ⅰ)依題意知:2a=2,∴a=1,
又點(diǎn)$P(2,\sqrt{6})$在雙曲線上,
∴$\frac{4}{1^2}-\frac{6}{b^2}=1⇒{b^2}=2$,
∴雙曲線方程為:${x^2}-\frac{y^2}{2}=1$
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),N(x0,y0)
由$\left\{\begin{array}{l}{x^2}-\frac{y^2}{2}=1\\ y=x+m\end{array}\right.$消y有x2-2mx-m2-2=0,
∴△=(-2m)2+4(m2+2)>0,
∴${x_1}+{x_2}=2m,{x_1}{x_2}=-({m^2}+2)$,
∵N為AB中點(diǎn),∴${x_0}=\frac{{{x_1}+{x_2}}}{2}=m,{y_0}={x_0}+m=2m$,
∵N在圓x2+y2=5上即m2+(2m)2=5,
∴m=±1,經(jīng)檢驗(yàn),符合題意.
所以,實(shí)數(shù)m的值為±1.
點(diǎn)評(píng) 本題主要考查雙曲線方程的求解,以及直線和雙曲線的位置關(guān)系,利用設(shè)而不求的思想是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a>b,則ac2>bc2 | B. | 若a>b>0,則$\frac{1}{a}$>$\frac{1}$ | ||
C. | 若a<b<0,則$\frac{a}$<$\frac{a}$ | D. | 若a>b,$\frac{1}{a}$>$\frac{1}$,則ab<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{\sqrt{3}}{3}$e,$\sqrt{e}$) | B. | (-$\frac{\sqrt{3}}{3}$e,0)∪(0,$\frac{\sqrt{3}}{3}$e) | C. | (0,$\frac{\sqrt{3}}{3}$e) | D. | ($\frac{1}{\sqrt{e}}$,1)∪{$\frac{\sqrt{3}}{3}$e} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com