【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點(diǎn),如圖 2.

(1)求證: 平面;

(2)求證: 平面

(3)求與平面所成角的正弦值.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)

【解析】試題分析:

(1)EC中點(diǎn)N,連結(jié)MN,BN.由幾何關(guān)系可證得四邊形ABNM為平行四邊形.BNAM,利用線(xiàn)面平行的判定定理可得平面;

(2) 由幾何關(guān)系有EDAD,利用面面垂直的性質(zhì)定理可得ED⊥平面ABCD,則EDBC,利用直角梯形的性質(zhì)結(jié)合勾股定理可得BCBD,據(jù)此由線(xiàn)面垂直的判定定理有平面;

(3) 平面PEC于點(diǎn)H,連接CH,則∠DCH為所求的角,利用三棱錐體積相等轉(zhuǎn)化頂點(diǎn)有: ,據(jù)此可求得,利用三角函數(shù)的定義可得與平面所成角的正弦值是.

試題解析:

(1)證明:取中點(diǎn),連結(jié).

中, 分別為的中點(diǎn),

所以,.

由已知,

所以四邊形為平行四邊形.

所以.

又因?yàn)?/span>平面,平面,

所以平面.

(2)證明:在正方形中, ,

又因?yàn)槠矫?/span>平面,且平面平面,

所以平面.

所以

在直角梯形中, ,可得.

中, .

所以.

所以平面.

(3)于點(diǎn),連接,為所求的角

(2)知,

所以,又因?yàn)?/span>平面

.

所以,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為任意給定的質(zhì)數(shù).證明一定存在質(zhì)數(shù),使得對(duì)任意的整數(shù)數(shù)都不能被整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓Cy21a1)的上頂點(diǎn)為A,右焦點(diǎn)為F,直線(xiàn)AF與圓Mx2y26x2y70相切.

1)求橢圓C的方程;

2)若不過(guò)點(diǎn)A的動(dòng)直線(xiàn)l與橢圓C相交于P,Q兩點(diǎn),且0,求證:直線(xiàn)l過(guò)定點(diǎn),并求出該定點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知內(nèi)角的角平分線(xiàn).

(1)用正弦定理證明: ;

2)若,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】21世紀(jì)城的街道都是東西向和南北向,為了加強(qiáng)安全管理,在一些十字路口設(shè)置保安亭(任何兩個(gè)保安亭都不在同一街道上),以?xún)蓚(gè)保安亭為其兩個(gè)頂點(diǎn)、街道為邊圍成的矩形稱(chēng)為一個(gè)安全區(qū),安全區(qū)(包括邊界)內(nèi)保安亭的個(gè)數(shù)稱(chēng)為該安全區(qū)的安全強(qiáng)度.如果世紀(jì)城兩個(gè)方向的街道都至少有,且任何兩條不平行的街道都交成一個(gè)十字路口,今按要求選定個(gè)十字路口設(shè)置保安亭,求安全強(qiáng)度最大的安全區(qū)的安全強(qiáng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)在點(diǎn)處的切線(xiàn).

(1)求證: ;

(2)設(shè),其中.若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)班級(jí)(各40名學(xué)生)進(jìn)行一門(mén)考試,為易于統(tǒng)計(jì)分析,將甲、乙兩個(gè)班學(xué)生的成績(jī)分成如下四組:,,,并分別繪制了如下的頻率分布直方圖:

規(guī)定:成績(jī)不低于90分的為優(yōu)秀,低于90分的為不優(yōu)秀.

1)根據(jù)這次抽查的數(shù)據(jù),填寫(xiě)下面的列聯(lián)表:

優(yōu)秀

不優(yōu)秀

合計(jì)

甲班

乙班

合計(jì)

2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為成績(jī)是否優(yōu)秀與班級(jí)有關(guān)?

附:臨界值參考表與參考公式

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“中國(guó)人均讀書(shū)4.3本(包括網(wǎng)絡(luò)文學(xué)和教科書(shū)),比韓國(guó)的11本.法國(guó)的20本.日本的40本.猶太人的64本少得多,是世界上人均讀書(shū)最少的國(guó)家.”這個(gè)論斷被各種媒體反復(fù)引用.出現(xiàn)這樣的統(tǒng)計(jì)結(jié)果無(wú)疑是令人尷尬的,而且和其他國(guó)家相比,我國(guó)國(guó)民的閱讀量如此之低,也和我國(guó)是傳統(tǒng)的文明古國(guó).禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內(nèi)人員的讀書(shū)興趣,特舉辦讀書(shū)活動(dòng),準(zhǔn)備進(jìn)一定量的書(shū)籍豐富小區(qū)圖書(shū)站,由于不同年齡段需看不同類(lèi)型的書(shū)籍,為了合理配備資源,現(xiàn)對(duì)小區(qū)內(nèi)看書(shū)人員進(jìn)行年齡調(diào)查,隨機(jī)抽取了一天名讀書(shū)者進(jìn)行調(diào)查,將他們的年齡分成6段: , , , , 后得到如圖所示的頻率分布直方圖.問(wèn):

(1)估計(jì)在40名讀書(shū)者中年齡分布在的人數(shù);

(2)求40名讀書(shū)者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書(shū)者中任取2名,求恰有1名讀書(shū)者年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,過(guò)點(diǎn)的直線(xiàn)與橢圓交于軸上方的,兩點(diǎn),且.

(Ⅰ)求橢圓的離心率;

(Ⅱ)(ⅰ)求直線(xiàn)的斜率;

(ⅱ)設(shè)點(diǎn)與點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱(chēng),直線(xiàn)上有一點(diǎn)的外接圓上,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案