【題目】甲、乙兩個(gè)班級(jí)(各40名學(xué)生)進(jìn)行一門考試,為易于統(tǒng)計(jì)分析,將甲、乙兩個(gè)班學(xué)生的成績(jī)分成如下四組:,,,,并分別繪制了如下的頻率分布直方圖:
規(guī)定:成績(jī)不低于90分的為優(yōu)秀,低于90分的為不優(yōu)秀.
(1)根據(jù)這次抽查的數(shù)據(jù),填寫下面的列聯(lián)表:
優(yōu)秀 | 不優(yōu)秀 | 合計(jì) | |
甲班 | |||
乙班 | |||
合計(jì) |
(2)根據(jù)(1)中的列聯(lián)表,能否有的把握認(rèn)為成績(jī)是否優(yōu)秀與班級(jí)有關(guān)?
附:臨界值參考表與參考公式
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(4x+1)+kx與g(x)=log4(a2x﹣a),其中f(x)是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)求函數(shù)g(x)的定義域;
(3)若函數(shù)f(x)與g(x)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】空氣質(zhì)量指數(shù)(Air Quality Index,簡(jiǎn)稱AQI)是定量描述空氣質(zhì)量狀況的指數(shù),空氣質(zhì)量按照AQI大小分為六級(jí):0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;>300為嚴(yán)重污染.一環(huán)保人士記錄了某地2020年某月10天的AQI的莖葉圖如圖所示.
(1)利用該樣本估計(jì)該地本月空氣質(zhì)量?jī)?yōu)良(AQI≤100)的天數(shù);(按這個(gè)月總共有30天計(jì)算)
(2)若從樣本中的空氣質(zhì)量不佳(AQI>100)的這些天中,隨機(jī)地抽取兩天深入分析各種污染指標(biāo),求該兩天的空氣質(zhì)量等級(jí)恰好不同的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點(diǎn),如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)有,兩個(gè)分廠生產(chǎn)某種產(chǎn)品,規(guī)定該產(chǎn)品的某項(xiàng)質(zhì)量指標(biāo)值不低于130的為優(yōu)質(zhì)品.分別從,兩廠中各隨機(jī)抽取100件產(chǎn)品統(tǒng)計(jì)其質(zhì)量指標(biāo)值,得到如圖頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,分別求出分廠的質(zhì)量指標(biāo)值的眾數(shù)和中位數(shù)的估計(jì)值;
(2)填寫列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為這兩個(gè)分廠的產(chǎn)品質(zhì)量有差異?
優(yōu)質(zhì)品 | 非優(yōu)質(zhì)品 | 合計(jì) | |
合計(jì) |
(3)(i)從分廠所抽取的100件產(chǎn)品中,利用分層抽樣的方法抽取10件產(chǎn)品,再?gòu)倪@10件產(chǎn)品中隨機(jī)抽取2件,已知抽到一件產(chǎn)品是優(yōu)質(zhì)品的條件下,求抽取的兩件產(chǎn)品都是優(yōu)質(zhì)品的概率;
(ii)將頻率視為概率,從分廠中隨機(jī)抽取10件該產(chǎn)品,記抽到優(yōu)質(zhì)品的件數(shù)為,求的數(shù)學(xué)期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,點(diǎn)在棱上,且.
(Ⅰ)求證:;
(Ⅱ)是否存在實(shí)數(shù),使得二面角的余弦值為?若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線:(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)過點(diǎn)且與直線平行的直線交于,兩點(diǎn),求點(diǎn)到,兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)若與有且僅有三個(gè)公共點(diǎn),求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線在點(diǎn)處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com