【題目】已知關(guān)于的不等式,解集為.
(1)若或,求的值.
(2)解關(guān)于的不等式,.
【答案】(1).
(2)當時,不等式的解集為;
當時,不等式的解集為;
當時,不等式的解集為;
當時,不等式的解集為;
當時,不等式的解集為.
【解析】
(1)將已知不等式分解因式,由不等式的解集為或,得且該不等式對應方程的兩個實數(shù)根為和,所以,可求a的值;
(2)根據(jù)已知條件根據(jù)a的正負和兩根的大小方面進行討論,共分五種情況討論a的范圍:時、時、時、時、時分別根據(jù)一元二次不等式的解法求出對應不等式的解集即可.
(1)∵關(guān)于x的不等式可變形為 且該不等式的解集為或,
所以
又因為不等式對應方程的兩個實數(shù)根為和;∴,
解得;
(2)①時,不等式可化為,它的解集為;
②時,不等式可化為,其對應的方程的兩個實數(shù)根為和,
當時,即,,∴不等式的解集為;
當時,原不等式化為,,∴不等式的解集為;
在時,,不等式的解集為;
在時,原不等式化為,,∴不等式的解集為;
綜上,時,不等式的解集為;
時,不等式的解集為;
時,不等式的解集為;
時,不等式的解集為;
時,不等式的解集為.
故得解.
科目:高中數(shù)學 來源: 題型:
【題目】下面推理過程中使用了類比推理方法,其中推理正確的是( )
A. 平面內(nèi)的三條直線,若,則.類比推出:空間中的三條直線,若,則
B. 平面內(nèi)的三條直線,若,則.類比推出:空間中的三條向量,若,則
C. 在平面內(nèi),若兩個正三角形的邊長的比為,則它們的面積比為.類比推出:在空間中,若兩個正四面體的棱長的比為,則它們的體積比為
D. 若,則復數(shù).類比推理:“若,則”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義在上的函數(shù),若已知其在內(nèi)只取到一個最大值和一個最小值,且當時函數(shù)取得最大值為;當,函數(shù)取得最小值為.
(1)求出此函數(shù)的解析式;
(2)是否存在實數(shù),滿足不等式?若存在,求出的范圍(或值),若不存在,請說明理由;
(3)若將函數(shù)的圖像保持橫坐標不變縱坐標變?yōu)樵瓉淼?/span>得到函數(shù),再將函數(shù)的圖像向左平移個單位得到函數(shù),已知函數(shù)的最大值為,求滿足條件的的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知平面ADC∥平面A1B1C1 , B為線段AD的中點,△ABC≈△A1B1C1 , 四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M為棱A1C1的中點.
(Ⅰ)若N為線段DC1上的點,且直線MN∥平面ADB1A1 , 試確定點N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|.
(1)作出函數(shù)f(x)的圖象;
(2)若不等式 ≤f(x)有解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在區(qū)間(0,+∞)內(nèi)的單調(diào)函數(shù),且對x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設(shè)f′(x)為f(x)的導函數(shù),則函數(shù)g(x)=f(x)﹣f′(x)的零點個數(shù)為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)是上的單調(diào)減函數(shù),已知,,且在定義域內(nèi)恒成立,則實數(shù)的取值范圍為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com