分析 根據(jù)余弦弦定理求出a,在利用正弦定理可得△ABC外接的半徑,即可得外接圓面積.
解答 解:由AB=c=4,AC=b=2,
${S_{△ABC}}=2\sqrt{3}$=$\frac{1}{2}$bcsinA,
可得sinA=$\frac{\sqrt{3}}{2}$.
∴A=60°或120°.
由余弦弦定理:cosA=$\frac{{c}^{2}+^{2}-{a}^{2}}{2bc}$,
當(dāng)A=60°,可得a=$2\sqrt{3}$.此時(shí)△ABC外接半徑R=$\frac{2\sqrt{3}}{2sinA}=2$,△ABC外接圓面積S=4π.
當(dāng)A=120°,可得a=$2\sqrt{7}$,此時(shí)△ABC外接半徑R=$\frac{2\sqrt{7}}{2sinA}$=$\frac{2\sqrt{21}}{3}$,△ABC外接圓面積S=$\frac{84}{9}$π.
點(diǎn)評(píng) 本題考查三角形的正余弦定理的靈活運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3.4 | B. | 4.0 | C. | 3.8 | D. | 3.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com