【題目】已知圓,圓,圓與圓的公切線的條數(shù)的可能取值共有( 。
A. 2種B. 3種C. 4種D. 5種
【答案】D
【解析】
求出兩圓的圓心距以及兩圓半徑之和和半徑之差,結(jié)合兩圓位置關(guān)系和切線條數(shù)關(guān)系進(jìn)行判斷即可.
兩圓的圓心和半徑分別為A(0,0),半徑R=1, B(2,0),半徑為r,
|AB|=2,半徑之和為1+r,半徑之差為r-1,
若兩圓相外切,即1+r=2,即r=1時(shí),此時(shí)兩圓公切線有3條,
若兩圓外離,則1+r<2,即0<r<1時(shí),兩圓公切線有4條,
若兩圓相交,則r-1<2且2<1+r,即1<r<3時(shí),兩圓相交,此時(shí)公切線有2條,
若兩圓內(nèi)切,即r-1=2,即r=3時(shí),此時(shí)兩圓公切線有1條,
若兩圓內(nèi)含,即r-1>2,即r>3,此時(shí)兩圓公切線為0條,
即圓A與圓B的公切線的條數(shù)的可能取值有5種,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)當(dāng)時(shí),判斷 在上的單調(diào)性,并說明理由;
(3)當(dāng)時(shí),求證: ,都有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)若關(guān)于的方程的解集中恰有一個(gè)元素,求的值;
(2)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)高考實(shí)行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個(gè)科目中選取三個(gè)科目作為選考科目,若一名學(xué)生從六個(gè)科目中選出了三個(gè)科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個(gè)選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.
某學(xué)校為了了解高一年級(jí)420名學(xué)生選考科目的意向,隨機(jī)選取30名學(xué)生進(jìn)行了一次調(diào)查,統(tǒng)計(jì)選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學(xué) | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有8人 | 8 | 8 | 4 | 2 | 1 | 1 |
選考方案待確定的有6人 | 4 | 3 | 0 | 1 | 0 | 0 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 1 | 0 | 0 | 1 |
(Ⅰ)估計(jì)該學(xué)校高一年級(jí)選考方案確定的學(xué)生中選考生物的學(xué)生有多少人?
(Ⅱ)假設(shè)男生、女生選擇選考科目是相互獨(dú)立的.從選考方案確定的8位男生隨機(jī)選出1人,從選考方案確定的10位女生中隨機(jī)選出1人,試求該男生和該女生的選考方案中都含有歷史科目的概率;
(Ⅲ)從選考方案確定的8名男生隨機(jī)選出2名,設(shè)隨機(jī)變量?jī)擅猩x考方案相同時(shí),兩名男生選考方案不同時(shí),求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面六個(gè)句子中,錯(cuò)誤的題號(hào)是________.
①周期函數(shù)必有最小正周期;
②若則,至少有一個(gè)為;
③為第三象限角,則;
④若向量與的夾角為銳角,則;
⑤存在,,使成立;
⑥在中,O為內(nèi)一點(diǎn),且,則O為的重心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某市統(tǒng)考的學(xué)生數(shù)學(xué)考試卷中隨機(jī)抽查100份數(shù)學(xué)試卷作為樣本,分別統(tǒng)計(jì)出這些試卷總分,由總分得到如下的頻率分別直方圖.
(1)求這100份數(shù)學(xué)試卷成績(jī)的中位數(shù);
(2)從總分在和的試卷中隨機(jī)抽取2份試卷,求抽取的2份試卷中至少有一份總分少于65分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列: 滿足: .記的前項(xiàng)和為,并規(guī)定.定義集合, , .
(Ⅰ)對(duì)數(shù)列: , , , , ,求集合;
(Ⅱ)若集合, ,證明: ;
(Ⅲ)給定正整數(shù).對(duì)所有滿足的數(shù)列,求集合的元素個(gè)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,圓的方程為,動(dòng)圓與圓內(nèi)切且與圓外切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)已知與為平面內(nèi)的兩個(gè)定點(diǎn),過點(diǎn)的直線與軌跡交于,兩點(diǎn),求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/span>
(1)一年中有31天的月份的全體;
(2)大于小于12.8的整數(shù)的全體;
(3)梯形的全體構(gòu)成的集合;
(4)所有能被3整除的數(shù)的集合;
(5)方程的解組成的集合;
(6)不等式的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com