A. | 3 | B. | 2 | C. | 4 | D. | 5 |
分析 圓C:x2+y2+2x-8y+m=0與拋物線上E:y2=8x的準線l相切,求出圓心與半徑,拋物線y2=8x的準線為l:x=-2,焦點為F(2,0),當P,Q,F(xiàn)三點共線時,P到點Q的距離d與點P到拋物線的焦點距離|PQ|之和最小,從而d+|PQ|的最小值為|FC|-r.
解答 解:圓C:x2+y2+2x-8y+m=0配方,得(x+1)2+(y-4)2=17-m,圓心為C(-1,4),半徑r=$\sqrt{17-m}$.
∵圓C與拋物線上E:y2=8x的準線l相切,∴$\sqrt{17-m}$=1,∴m=16
如圖所示,由題意,知拋物線y2=8x的焦點為F(2,0),連接PF,則d=|PF|.
d+|PQ|=|PF|+|PQ|,顯然,|PF|+|PQ|≥|FQ|(當且僅當F,P,Q三點共線時取等號).
而|FQ|為圓C上的動點Q到定點F的距離,
顯然當F,Q,C三點共線時取得最小值,
最小值為|CF|-r=$\sqrt{(-1-2)^{2}+(4-0)^{2}}$-1=5-1=4.
故選:C.
點評 本題考查線段和的最小值的求法,考查拋物線的定義,是中檔題,正確轉(zhuǎn)化是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{8}{5}$ | B. | $\frac{9}{5}$ | C. | $-\frac{9}{5}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 21 | B. | -21 | C. | 441 | D. | -441 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+3i | B. | -4+3i | C. | -4-3i | D. | 4-3i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com