9.如圖(1),三棱錐P-ABC中,PC⊥平面ABC,F(xiàn),G,H,分別是PC,AC,BC的中點(diǎn),I是線段FG上任意一點(diǎn),PC=AB=2BC,過點(diǎn)F作平行于底面ABC的平面截三棱錐,得到幾何體DEF-ABC,如圖(2)所示.
(1)求證:HI∥平面ABD;
(2)若AC⊥BC,求二面角A-DE-F的余弦值.

分析 (1)利用中位線定理、面面線面平行的判定與性質(zhì)定理即可證明.
(2)利用余弦定理可得cos∠GHF,根據(jù)VC-FGH=VF-CGH,即可得出.

解答 (1)證明:∵F,G,H,分別是PC,AC,BC的中點(diǎn),∴GH∥AB,F(xiàn)G∥PA.∵GH?平面PAB,F(xiàn)G?平面PAB,
∴GH∥平面PAB,F(xiàn)G∥平面PAB.∵FG∩GH=G,∴平面PAB∥平面FGH.∵HI?平面FGH,∴HI∥平面ABD.
(2)解:由題意可得:HF=$\frac{\sqrt{5}}{2}$,HG=1,GF=$\frac{\sqrt{7}}{2}$.
故cos∠GHF=$\frac{1+\frac{5}{4}-\frac{7}{4}}{2×1×\frac{\sqrt{5}}{2}}$=$\frac{\sqrt{5}}{10}$.故sin∠GHF=$\frac{\sqrt{95}}{10}$,記點(diǎn)C到平面FGH的距離為h,
∵VC-FGH=VF-CGH,
∴$\frac{1}{3}×(\frac{1}{2}×\frac{1}{2}×\frac{\sqrt{3}}{2})$×1=$\frac{1}{3}×$$(\frac{1}{2}×1×\frac{\sqrt{5}}{2}×\frac{\sqrt{95}}{10})$×h,
解得h=$\frac{\sqrt{57}}{19}$.

點(diǎn)評(píng) 本題考查了面面線面平行的判定與性質(zhì)定理、三角形中位線定理、“等體積變形”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,滿足對(duì)任意的正整數(shù)n,均有Sn+3=8Sn+3,則a1=$\frac{3}{7}$,公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(1,$\frac{\sqrt{3}}{2}$),橢圓的左、右頂點(diǎn)分別為A1,A2,點(diǎn)P坐標(biāo)為(4,0),|PA1|,|A1A2|,|PA2|成等差數(shù)列.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)橢圓內(nèi)部是否存在一個(gè)定點(diǎn),過此點(diǎn)的直線交橢圓于M,N兩點(diǎn),且$\overrightarrow{PM}$•$\overrightarrow{PN}$=12恒成立,若存在,求出此點(diǎn),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.從2013年1月1號(hào)開始,鐵道部對(duì)火車票大面積降價(jià),但降價(jià)幅度引發(fā)了爭(zhēng)議.于是,某高校對(duì)此展開了一項(xiàng)調(diào)查,得到如下數(shù)據(jù):
對(duì)此事的態(tài)度好評(píng)(有利于百姓出行)中評(píng)(影響不大)差評(píng)(純屬忽悠)不關(guān)心
人數(shù)2000400030001000
若從參與調(diào)查的人員中,按分層抽樣的方法抽取50人進(jìn)行座談,則給出“差評(píng)”與“好評(píng)”的人數(shù)之差為( 。
A.10B.8C.5D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.求值:tan210°=( 。
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知2bsin2A=3asinB,且c=2b,則$\frac{a}$等于$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等差數(shù)列{an}與等差數(shù)列{bn}的前n項(xiàng)和分別為Sn和Tn,若$\frac{S_n}{T_n}=\frac{3n-1}{2n+3}$,則$\frac{{{a_{10}}}}{{{b_{10}}}}$=( 。
A.$\frac{3}{2}$B.$\frac{14}{13}$C.$\frac{56}{41}$D.$\frac{29}{23}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知f(x)=3sin(2x+$\frac{π}{4}$)-1.
(1)f(x)的圖象是由y=sin x的圖象如何變換而來?
(2)求f(x)的最小正周期、圖象的對(duì)稱軸方程、最大值及其對(duì)應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)$f(x)=sin2x+2{sin^2}\frac{1}{2}x$,則$f(\frac{π}{2017})+f(\frac{2π}{2017})+f(\frac{3π}{2017})+…+f(\frac{2016π}{2017})$=2016.

查看答案和解析>>

同步練習(xí)冊(cè)答案