【題目】已知拋物線的方程為,其焦點為,為過焦點的拋物線的弦,過分別作拋物線的切線,,設,相交于點.
(1)求的值;
(2)如果圓的方程為,且點在圓內部,設直線與相交于,兩點,求的最小值.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的參數方程為(為參數),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)設點分別為曲線與曲線上的任意一點,求的最大值;
(2)設直線(為參數)與曲線交于兩點,且,求直線的普通方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:的焦點分別為,,橢圓的離心率為,且經過點,經過,作平行直線,,交橢圓于兩點,和兩點,.
(1)求的方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線的參數方程為為參數,直線與曲線分別交于兩點.
(1)若點的極坐標為,求的值;
(2)求曲線的內接矩形周長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義向量的外積:叫做向量與的外積,它是一個向量,滿足下列兩個條件:
(1),,且,和構成右手系(即三個向量兩兩垂直,且三個向量的方向依次與拇指、食指、中指的指向一致);
(2)的模(表示向量、的夾角);
如圖,在正方體,有以下四個結論:
①與方向相反;
②;
③與正方體表面積的數值相等;
④與正方體體積的數值相等.
這四個結論中,正確的結論有( )個
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017高考新課標Ⅲ,理19)如圖,四面體ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)證明:平面ACD⊥平面ABC;
(2)過AC的平面交BD于點E,若平面AEC把四面體ABCD分成體積相等的兩部分,求二面角D–AE–C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數=.
(1)若不等式的解集為,求不等式的解集;
(2)若對于任意的,不等式恒成立,求實數的取值范圍;
(3)已知,若方程在有解,求實數的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com