【題目】已知全集U=R,A={y|y=2x+1},B={x|lnx<0},則(UA)∩B=( 。
A.?
B.{x|<x≤1}
C.{x|x<1}
D.{x|0<x<1}

【答案】D
【解析】解:由題意A={y|y=2x+1}={y|y>1},B={x|lnx<0}={x|0<x<1},
故CUA={y|y≤1}
∴(CUA)∩B={x|0<x<1}
故選D
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解集合的交集運(yùn)算的相關(guān)知識(shí),掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立,以及對(duì)集合的補(bǔ)集運(yùn)算的理解,了解對(duì)于全集U的一個(gè)子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱(chēng)為集合A相對(duì)于全集U的補(bǔ)集,簡(jiǎn)稱(chēng)為集合A的補(bǔ)集,記作:CUA即:CUA={x|x∈U且x∈A};補(bǔ)集的概念必須要有全集的限制.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知函數(shù).

(Ⅰ)當(dāng)時(shí),解關(guān)于x的不等式;

(Ⅱ)若不等式的解集為D,且,求m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是美籍法國(guó)數(shù)學(xué)家伯努瓦曼德?tīng)柌剂_特( )在20世紀(jì)70年代創(chuàng)立的一門(mén)新學(xué)科,它的創(chuàng)立為解決傳統(tǒng)眾多領(lǐng)域的難題提供了全新的思路.下圖是按照分型的規(guī)律生長(zhǎng)成的一個(gè)樹(shù)形圖,則第10行的空心圓的個(gè)數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若對(duì)任意的m,,,都有

,求a的取值范圍.

若不等式對(duì)任意都恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列說(shuō)法:

①集合與集合是相等集合;

②不存在實(shí)數(shù),使為奇函數(shù);

③若,且f(1)=2,則

④對(duì)于函數(shù) 在同一直角坐標(biāo)系中,若,則函數(shù)的圖象關(guān)于直線對(duì)稱(chēng);

⑤對(duì)于函數(shù) 在同一直角坐標(biāo)系中,函數(shù)的圖象關(guān)于直線對(duì)稱(chēng);其中正確說(shuō)法是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一圓與直線相切于點(diǎn),且經(jīng)過(guò)點(diǎn),求此圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知=(2﹣sin(2x+),﹣2),=(1,sin2x),f(x)= , (x∈[0,])
(1)求函數(shù)f(x)的值域;
(2)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊長(zhǎng)分別為a,b,c,若f()=1,b=1,c= , 求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,已知點(diǎn)A5,-2,B7,3,且邊AC的中點(diǎn)M在y軸上,邊BC的中點(diǎn)N在x軸上,求:

(1)頂點(diǎn)C的坐標(biāo);

(2)直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)實(shí)數(shù)x,y滿足 時(shí),1≤ax+y≤4恒成立,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案