20.已知直線ax+4y-2=0與直線2x-5y+b=0互相垂直且交于點(1,c),求a,b,c的值.

分析 利用相互垂直的直線斜率之間的關(guān)系、點與直線之間的關(guān)系即可得出.

解答 解:由題意可得:$-\frac{a}{4}$×$(-\frac{2}{-5})$=-1,a+4c-2=0,2-5c+b=0,
聯(lián)立解得a=10,b=-12,c=-2.

點評 本題考查了相互垂直的直線斜率之間的關(guān)系、點與直線之間的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=sin(x+$\frac{π}{6}$)+cos2$\frac{x}{2}$的振幅為$\frac{\sqrt{7}}{2}$,最小正周期為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)A,B為拋物線x2=4y上的兩動點,且線段AB的長為6,M為線段AB的中點,則點M到x軸的最短距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知四棱錐P-ABCD中,底面四邊形為正方形,側(cè)面PDC為正三角形,且平面PDC⊥底面ABCD,E為PC的中點
(1)求證:PA∥平面EDB;
(2)求證:DE⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若等邊三角形ABC的邊長為2,平面內(nèi)一點M滿足$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CB}$+$\frac{1}{3}$$\overrightarrow{CA}$,則$\overrightarrow{MA}$•$\overrightarrow{AB}$等于( 。
A.2$\sqrt{3}$B.-2$\sqrt{3}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知O是邊長為1的正三角形ABC的中心,則($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)(x∈R)滿足f(-x)=-f(x)=f(4-x),當(dāng)x∈(0,2)時,f(x)=ln(x2-x+b).若函數(shù)f(x)在區(qū)間[-2,2]上有5個零點,則實數(shù)b的取值范圍是$\frac{1}{4}<b≤1$或$b=\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求函數(shù)y=2sin2x+2cosx-3的最小值、最大值,并寫出取最小值、最大值時自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1( a>b>0 ) 的離心率為$\frac{\sqrt{3}}{3}$,焦距為2.則橢圓方程為$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

同步練習(xí)冊答案