9.求函數(shù)y=2sin2x+2cosx-3的最小值、最大值,并寫出取最小值、最大值時自變量x的集合.

分析 將函數(shù)進行降次化簡,利用二次函數(shù)性質,結合三角函數(shù)的圖象和性質即可解決.

解答 解:y=2sin2x+2cosx-3
?y=2(1-cos2x)+2cosx-3
?y=$-2{(cosx-\frac{1}{2})^2}-\frac{1}{2}$,
∵-1≤cosx≤1,
∴當$cosx=\frac{1}{2}$時,y取得最大值,即${y_{max}}=-\frac{1}{2}$,
此時自變量x的集合為{x|$x=±\frac{π}{3}+2kπ$,k∈Z};
當cosx=-1時,y取得最大值,即ymin=-5,
此時自變量x的集合為{x|x=2kπ,k∈Z}.

點評 本題考查了三角函數(shù)的降次化簡,構造二次函數(shù),利用二次函數(shù)性質與三角函數(shù)的性質相結合的運用.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知點P是橢圓$\frac{{x}^{2}}{3}$+y2=1上的動點,M,N是直線l:y=x上的兩個動點,則滿足|MN|=t,則
①存在實數(shù)t使得△MNP為正三角的點P僅有一個
②存在實數(shù)t使得△MNP為正三角的點P僅有兩個
③存在實數(shù)t使得△MNP為正三角的點P僅有三個
④存在實數(shù)t使得△MNP為正三角的點P僅有四個
⑤存在實數(shù)t使得△MNP為正三角的點P有無數(shù)個
上述命題中正確命題有(  )
A.②④B.①③C.②③④D.①②③④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知直線ax+4y-2=0與直線2x-5y+b=0互相垂直且交于點(1,c),求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=sinx,f(x)的導函數(shù)是(  )
A.cosxB.-cosxC.sinxD.-sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)y=tan$\frac{1}{2}$x的最小正周期為( 。
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow$=(1,sin2x),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-1.
(Ⅰ)當x=$\frac{π}{4}$時,求|a-b|的值;
(Ⅱ)求函數(shù)f(x)的最小正周期以及單調遞增區(qū)間;
(Ⅲ)求方程f(x)=k,(0<k<2),在[-$\frac{π}{12}$,$\frac{23π}{12}$]內的所有實數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.解下列各題:
(1)求下列橢圓5x2+9y2=100的焦點和頂點的坐標;
(2)求拋物線 y2-6x=0的焦點坐標,準線方程和對稱軸;
(3)求焦點在x軸上,兩頂點間的距離是8,e=$\frac{5}{4}$的 雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列說法中錯誤的是( 。
A.命題“若x=1,則x2+x-2=0”的否命題是假命題
B.空間任意一點O與不共線的三點A,B,C,若$\overrightarrow{OP}$=2$\overrightarrow{OA}$-2$\overrightarrow{OB}$-$\overrightarrow{OC}$,則P,A,B,C四點共面
C.命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”
D.過點(0,2)與拋物線y2=8x只有一個公共點的直線有3條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=(x-a)2lnx,a∈R
(1)證明:函數(shù)f(x)=(x-a)2lnx,a∈R的圖象恒經過一個定點;
(2)若函數(shù)h(x)=$\frac{x}{x-a}$f′(x)在(0,+∞)有定義,且不等式h(x)≤0在(0,+∞)上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案