10.如圖,四棱錐P-ABCD中,PD⊥底面ABCD,且底面ABCD為平行四邊形,若∠DAB=60°,AB=2,AD=1.
(1)求證:PA⊥BD;
(2)若∠PCD=45°,求點D到平面PBC的距離h.

分析 (1)利用勾股定理逆定理證明AD⊥BD,結(jié)合BD⊥PD得出BD⊥平面PAD,故而PA⊥BD;
(2)根據(jù)VP-BCD=VD-BCP列方程解出h.

解答 (1)證明:∵AD=1,AB=2,∠DAB=60°,
∴BD2=AB2+AD2-2AB•AD•cos60°=3,
∴AD2+BD2=AB2,
∴AD⊥BD,
∵PD⊥平面ABCD,BD?平面ABCD,
∴PD⊥BD,又AD∩PD=D,
∴BD⊥平面PAD,
∵PA?平面PAD,
∴BD⊥PA.
(2)解:由(1)可知BC⊥BD,
∴S△BCD=$\frac{1}{2}×BC×BD$=$\frac{\sqrt{3}}{2}$,
∵∠PCD=45°,∴PD=CD=2,
∴VP-BCD=$\frac{1}{3}×\frac{\sqrt{3}}{2}×2$=$\frac{\sqrt{3}}{3}$.
∵PC=$\sqrt{2}$CD=2$\sqrt{2}$,PB=$\sqrt{P{D}^{2}+D{B}^{2}}$=$\sqrt{7}$,BC=1,
∴BC2+PB2=PC2,∴PB⊥BC,
∴S△BCP=$\frac{1}{2}BC•PB$=$\frac{\sqrt{7}}{2}$,
∴VD-BCP=$\frac{1}{3}×\frac{\sqrt{7}}{2}×h$=$\frac{\sqrt{7}h}{6}$,
又VP-BCD=VD-BCP,∴$\frac{\sqrt{7}h}{6}$=$\frac{\sqrt{3}}{3}$,
解得h=$\frac{2\sqrt{21}}{7}$.

點評 本題考查了線面垂直的判定與性質(zhì),棱錐的體積計算,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)集合$A=\left\{{({x,y})|\frac{x^2}{4}+\frac{y^2}{16}=1}\right\}$,B={(x,y)|y=3x},則A∩B的子集的個數(shù)是( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知點P在拋物線y=x2上,點Q在圓(x-4)2+(y+$\frac{1}{2}$)2=1上,則|PQ|的最小值為( 。
A.$\frac{3\sqrt{5}}{2}$-1B.$\frac{3\sqrt{3}}{2}$-1C.2$\sqrt{3}$-1D.$\sqrt{10}$-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若正四棱錐P-ABCD的高為2,側(cè)棱PA與底面ABCD所成角的大小為$\frac{π}{4}$,則該正四棱錐的體積為$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若數(shù)列{an}滿足a1=12,a1+2a2+3a3+…+nan=n2an,則a2017=$\frac{12}{2017}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若函數(shù)f(x)=4x+a•2x+a+1在R上存在零點,則實數(shù)a的取值范圍為(-∞,2-2$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.曲線y=ex+x在點(0,1)處的切線方程為( 。
A.x+y-1=0B.2x-y+1=0C.2x+y-1=0D.x-y+1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)集合A={x|log2(x+1)<2},B={y|y=$\sqrt{16-{2}^{x}}$},則(∁RA)∩B=( 。
A.(0,3)B.[0,4]C.[3,4)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.為了解某種產(chǎn)品的月廣告費用x(單位:萬元)對月銷售量y(單位:萬臺)的影響,收集到如下5個月的統(tǒng)計數(shù)據(jù):
廣告費x(萬元)12345
銷售量y(萬臺)25101518
根據(jù)上表中的數(shù)據(jù)可得線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=4.2,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,據(jù)此估計,該產(chǎn)品的月廣告費為13萬元時的月銷售量為( 。
A.30B.52C.57.2D.70

查看答案和解析>>

同步練習冊答案