【題目】從柳州鐵一中高二男生中隨機(jī)選取100名學(xué)生,將他們的體重(單位:)數(shù)據(jù)繪制成頻率分布直方圖,如圖所示.

1)估計(jì)該校的100名同學(xué)體重的平均值和方差(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);

2)若要從體重在內(nèi)的兩組男生中,用分層抽樣的方法選取5人,再從這5人中隨機(jī)抽取2人,求被抽取的兩位同學(xué)來自不同組的概率.

【答案】1)平均值64.5,方差114.75; 2

【解析】

1)由頻率分布直方圖先求得各組的頻率,即可由頻率分布直方圖中各小矩形底邊中點(diǎn)乘以頻率求和,得平均數(shù);由方差公式,可計(jì)算數(shù)據(jù)的方差.

2)由題意線求得體重在的男生人數(shù),利用分層抽樣比可得在各組內(nèi)抽取人數(shù).由古典概型概率求法,隨機(jī)抽取2人的所有情況,即可得解.

1)依頻率分布直方圖得各組的頻率依次為:

0.05,0.350.30,0.20,0.10;

計(jì)算這100名學(xué)生的平均體重約為:

;

方差為:

2)由(1)及已知可得:體重在的男生分別為:

(人),(人),

從中用分層抽樣的方法選5人,則體重在內(nèi)的應(yīng)選3人,記為ab,c

體重在內(nèi)的應(yīng)選2人;記為1,2;

隨機(jī)抽取2名同學(xué)有如下種情形:, 共有10個(gè)基本事件;

其中符合抽取的2名同學(xué)來自不同組的基本事件有6個(gè),

所以抽取的2名同學(xué)來自不同組的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是(

A.在回歸分析中,相關(guān)指數(shù)越大,說明殘差平方和越小,回歸效果越好

B.線性回歸方程對(duì)應(yīng)的直線至少經(jīng)過其樣本數(shù)據(jù)點(diǎn)中的一個(gè)點(diǎn)

C.在線性回歸分析中,相關(guān)系數(shù)為,越接近于1,相關(guān)程度越大

D.在回歸直線中,變量每增加一個(gè)單位,變量大約增加0.5個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;

當(dāng)時(shí),令的圖象有兩個(gè)交點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)試確定上的單調(diào)性;

(2)若,函數(shù)在(0,2)上有極值,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考查某廠2000名工人的生產(chǎn)技能情況,隨機(jī)抽查了該廠名工人某天的產(chǎn)量(單位:件),整理后得到如下的頻率分布直方圖(產(chǎn)量的區(qū)間分別為:),其中產(chǎn)量在的工人有6名.

(1)求這一天產(chǎn)量不小于25的工人數(shù);

(2)該廠規(guī)定從產(chǎn)量低于20件的工人中選取2名工人進(jìn)行培訓(xùn),求這兩名工人不在同一分組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鳳鳴山中學(xué)的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)),用最小二乘法近似得到回歸直線方程為,則下列結(jié)論中不正確的是(

A.具有正線性相關(guān)關(guān)系

B.回歸直線過樣本的中心點(diǎn)

C.若該中學(xué)某高中女生身高增加1cm,則其體重約增加0.85kg

D.若該中學(xué)某高中女生身高為160cm,則可斷定其體重必為50.29kg.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市有兩家共享單車公司,在市場(chǎng)上分別投放了黃、藍(lán)兩種顏色的單車,已知黃、藍(lán)兩種顏色的單車的投放比例為2:1.監(jiān)管部門為了了解兩種顏色的單車的質(zhì)量,決定從市場(chǎng)中隨機(jī)抽取5輛單車進(jìn)行體驗(yàn),若每輛單車被抽取的可能性相同.

(1)求抽取的5輛單車中有2輛是藍(lán)色顏色單車的概率;

(2)在騎行體驗(yàn)過程中,發(fā)現(xiàn)藍(lán)色單車存在一定質(zhì)量問題,監(jiān)管部門決定從市場(chǎng)中隨機(jī)地抽取一輛送技術(shù)部門作進(jìn)一步抽樣檢測(cè),并規(guī)定若抽到的是藍(lán)色單車,則抽樣結(jié)束,若抽取的是黃色單車,則將其放回市場(chǎng)中,并繼續(xù)從市場(chǎng)中隨機(jī)地抽取下一輛單車,并規(guī)定抽樣的次數(shù)最多不超過)次.在抽樣結(jié)束時(shí),已取到的黃色單車以表示,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知、是異面直線,給出下列結(jié)論:

①一定存在平面,使直線平面,直線平面;

②一定存在平面,使直線平面,直線平面;

③一定存在無數(shù)個(gè)平面,使直線與平面交于一個(gè)定點(diǎn),且直線平面

則所有正確結(jié)論的序號(hào)為(

A.①②B.C.②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐,底面為菱形,,

, 平面, 分別是的中點(diǎn)。

1證明: ;

2上的動(dòng)點(diǎn),與平面所成最大角

的正切值為,求二面角的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案