【題目】在封閉的直三棱柱ABC﹣A1B1C1內(nèi)有一個體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=5,則V的最大值是( )
A.4π
B.
C.
D.
【答案】D
【解析】解:如圖,由題知,球的體積要盡可能大時,球需與三棱柱內(nèi)切. 先保證截面圓與△ABC內(nèi)切,記圓O的半徑為r,
則由等面積法得 ,
所以(AC+AB+BC)r=6×8,又AB=6,BC=8,
所以AC=10,所以r=2.由于三棱柱高為5,此時可以保證球在三棱柱內(nèi)部,
若r增大,則無法保證球在三棱柱內(nèi),
故球的最大半徑為2,所以 .
故選:D.
先保證截面圓與△ABC內(nèi)切,記圓O的半徑為r,由等面積法得(AC+AB+BC)r=6×8,解得r=2.由于三棱柱高為5,此時可以保證球在三棱柱內(nèi)部,球的最大半徑為2,由此能求出結(jié)果.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),a≠0,x∈R)
(1)若函數(shù)f(x)的圖象過點(diǎn)(﹣2,1),且函數(shù)f(x)有且只有一個零點(diǎn),求f(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈(﹣1,2)時,g(x)=f(x)﹣kx是單調(diào)函數(shù),求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,且AB=4,BC=CD=ED=EA=2.
(1)求二面角E﹣AB﹣D的正切值;
(2)在線段CE上是否存在一點(diǎn)F,使得平面EDC⊥平面BDF?若存在,求 的值,若不存在請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線在點(diǎn)處的切線與曲線也相切.
(1)求實數(shù)的值;
(2)設(shè)函數(shù),若且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合M={(x,y)|y=f(x)},若對于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對點(diǎn)集”.給出下列四個集合:
①M(fèi)={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對點(diǎn)集”的序號是( )
A.①②
B.②③
C.①④
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是以2為首項的等差數(shù)列,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項公式及前項和;
(Ⅱ)若,求數(shù)列的前項之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是二次函數(shù),且滿足f(0)=1,f(x+1)﹣f(x)=2x+5;函數(shù)g(x)=ax(a>0且a≠1)
(1)求f(x)的解析式;
(2)若g(2)= ,且g[f(x)]≥k對x∈[﹣1,1]恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com