20.已知α,β是兩個不同的平面,給出下列四個條件:
①存在一條直線a,使得a⊥α,a⊥β;
②存在兩條平行直線a,b,使得a∥α,a∥β,b∥α,b∥β;
③存在兩條異面直線a,b,使得a?α,b?β,a∥β,b∥α;
④存在一個平面γ,使得γ⊥α,γ⊥β.
其中可以推出α∥β的條件個數(shù)是( 。
A.1B.2C.3D.4

分析 根據(jù)垂直于同一直線的兩平面平行,判斷①是否正確;
利用線線平行,線面平行,面面平行的轉(zhuǎn)化關(guān)系,判斷②是否正確;
借助圖象,分別過兩平行線中一條的二平面位置關(guān)系部確定,判斷③的正確性;
根據(jù)垂直于同一平面的兩平面位置關(guān)系部確定來判斷④是否正確.

解答 解:當α、β不平行時,不存在直線a與α、β都垂直,∴a⊥α,a⊥β⇒α∥β,故①正確;
對②,∵a∥b,a?α,b?β,a∥β,b∥α?xí)r,α、β位置關(guān)系不確定②不正確;
對③,異面直線a,b.∴a過上一點作c∥b;過b上一點作d∥a,則 a與c相交;b與d相交,根據(jù)線線平行⇒線面平行⇒面面平行,正確
對④,∵γ⊥α,γ⊥β,α、β可以相交也可以平行,∴不正確.
故選B.

點評 本題考查面面平行的判定.通常利用線線、線面、面面平行關(guān)系的轉(zhuǎn)化判定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.命題“對任意x∈R,都有x2≥0”的否定為(  )
A.對任意x∈R,使得x2<0B.不存在x∈R,使得x2<0
C.存在x0∈R,都有$x_0^2≥0$D.存在x0∈R,都有$x_0^2<0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知角θ的終邊上一點P(a,-1)(a≠0),且tanθ=-a,則sinθ的值是( 。
A.±$\frac{\sqrt{2}}{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$的焦點到相應(yīng)準線的距離等于實軸長,則雙曲線的離心率為1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)$\frac{i}{1+i}=x+yi$(x,y∈R,i為虛數(shù)單位),則模|x-yi|=( 。
A.1B.$\frac{1}{2}$C.$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖是一個組合體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的體積是( 。
A.$\frac{38π}{3}$B.$\frac{19π}{3}$C.$\frac{13π}{3}$D.$\frac{11π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知{an}是等比數(shù)列,滿足a1=3,a4=24,數(shù)列{an+bn}是首項為4,公差為1的等差數(shù)列.
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的體積是$\frac{4\sqrt{3}}{3}$(單位:cm3),表面積是8+$\sqrt{3}$+$\sqrt{7}$(單位:cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知動點P與兩個頂點M(1,0),N(4,0)的距離的比為$\frac{1}{2}$.
(I)求動點P的軌跡方程;
(II)若點A(-2,-2),B(-2,6),C(-4,2),是否存在點P,使得|PA|2+|PB|2+|PC|2=36.若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案