17.在數(shù)列{an}中,an=2an-1+1(n≥2,n∈N*)且a1=2.
(Ⅰ)證明:數(shù)列{an+1}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

分析 (Ⅰ)對(duì)原等式兩邊加1,結(jié)合等比數(shù)列的定義,即可得證;
(Ⅱ)運(yùn)用等比數(shù)列的通項(xiàng)公式可得${a_n}+1=3•{2^{n-1}}$,即${a_n}=3•{2^{n-1}}-1$,再由數(shù)列的求和方法:分組求和,運(yùn)用等比數(shù)列的求和公式,即可得到所求和.

解答 (Ⅰ)證明:∵an=2an-1+1,
∴an+1=2(an-1+1),
∵a1=2,∴a1+1=3,
則數(shù)列{an+1}是以3為首項(xiàng),2為公比的等比數(shù)列;
(Ⅱ)解:由(Ⅰ)知${a_n}+1=3•{2^{n-1}}$,
∴${a_n}=3•{2^{n-1}}-1$,
則Sn=(3+6+…+3•2n-1)-(1+1+…+1)
∴${S_n}=\frac{{3(1-{2^n})}}{1-2}-n=3•{2^n}-n-3$.

點(diǎn)評(píng) 本題考查等比數(shù)列的定義的運(yùn)用,以及通項(xiàng)公式的運(yùn)用,考查數(shù)列的求和方法:分組求和,注意運(yùn)用等比數(shù)列的求和公式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥1}\\{x-y≤0}\\{x-2y+2≥0}\end{array}\right.$則$\frac{y}{x}$的最大值為(  )
A.1B.3C.$\frac{3}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,然后在矩形紙板的四個(gè)角上切去邊長(zhǎng)相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒(如圖).設(shè)小正方形邊長(zhǎng)為x厘米,矩形紙板的兩邊AB,BC的長(zhǎng)分別為a厘米和b厘米,其中a≥b.
(1)當(dāng)a=90時(shí),求紙盒側(cè)面積的最大值;
(2)試確定a,b,x的值,使得紙盒的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.曲線f(x)=xex在點(diǎn)P(1,e)處的切線與坐標(biāo)軸圍成的三角形面積為$\frac{e}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知正項(xiàng)數(shù)列{an}中,a1=1,a2=2,$2{a_{n+1}}^2={a_{n+2}}^2+{a_n}^2$,則a6等于(  )
A.16B.8C.4D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.中國(guó)古代算書《孫子算經(jīng)》中有一著名的問(wèn)題“物不知數(shù)”如圖1,原題為:今有物,不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問(wèn)物幾何?后來(lái),南宋數(shù)學(xué)家秦九韶在其著作《數(shù)學(xué)九章》中對(duì)此類問(wèn)題的解法做了系統(tǒng)的論述,并稱之為“大衍求一術(shù)”,如圖2程序框圖的算法思路源于“大衍求一術(shù)”執(zhí)行該程序框圖,若輸入的a,b分別為20,17,則輸出的c=( 。
A.1B.6C.7D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若復(fù)數(shù)z滿足($\sqrt{3}$+i)•z=4i,其中i為虛數(shù)單位,則z=( 。
A.1-$\sqrt{3}$iB.$\sqrt{3}$-iC.$\sqrt{3}$+iD.1+$\sqrt{3}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{xlnx-2x,x>0}\\{{x}^{2}+\frac{3}{2}x,x≤0}\end{array}\right.$的圖象上有且僅有四個(gè)不同的點(diǎn)關(guān)于直線y=-1的對(duì)稱點(diǎn)在y=kx-1的圖象上,則實(shí)數(shù)k的取值范圍是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.給甲、乙、丙三人打電話,若打電話的順序是任意的,則第一個(gè)打電話給丙的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案