某小組共有五位同學(xué),他們的身高(單位:米)以及體重指標(biāo)(單位:千克/米2)如下表所示:

 
A
B
C
D
E
身高
1.69
1.73
1.75
1.79
1.82
體重指標(biāo)
19.2
25.1
18.5
23.3
20.9
(1)從該小組身高低于1.80的同學(xué)中任選2人,求選到的2人身高都在1.78以下的概率;
(2)從該小組同學(xué)中任選2人,求選到的2人的身高都在1.70以上且體重指標(biāo)都在[18.5,23.9)中的概率.

(1);(2).

解析試題分析:這是一個(gè)古典概型題目(1)、(2)先用列舉法寫出總的事件情況個(gè),再寫出滿足條件的子事件的情況個(gè),由求解
試題解析:(1)從身高低于1.80的同學(xué)中任選2人,其一切可能的結(jié)果組成的基本事件有:
(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6個(gè).
由于每個(gè)人被選到的機(jī)會(huì)均等,因此這些基本事件的出現(xiàn)是等可能的.          4分
選到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C),共3個(gè).
因此選到的2人身高都在1.78以下的概率為.          6分
(2)從該小組同學(xué)中任選2人,其一切可能的結(jié)果組成的基本事件有:(A,B),(A,C),(A,D),
(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10個(gè).
由于每個(gè)人被選到的機(jī)會(huì)均等,因此這些基本事件的出現(xiàn)是等可能的.          10分
選到的2人身高都在1.70以上且體重指標(biāo)都在[18.5,23.9)中的事件有:
(C,D),(C,E),(D,E),共3個(gè).
因此選到的2人的身高都在1.70以上且體重指標(biāo)都在[18.5,23.9)中的概率為.   12分
考點(diǎn):1.列舉法表示基本事件;2.古典概型概率求法

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個(gè)袋子中裝有6個(gè)紅球和4個(gè)白球,假設(shè)每一個(gè)球被摸到的可能性是相等的.
(Ⅰ)從袋子中摸出3個(gè)球,求摸出的球?yàn)?個(gè)紅球和1個(gè)白球的概率;
(Ⅱ)從袋子中摸出兩個(gè)球,其中白球的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某舞蹈小組有2名男生和3名女生.現(xiàn)從中任選2人參加表演,記為選取女生的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校50名學(xué)生參加智力答題活動(dòng),每人回答3個(gè)問題,答對(duì)題目個(gè)數(shù)及對(duì)應(yīng)人數(shù)統(tǒng)計(jì)結(jié)果見下表:

答對(duì)題目個(gè)數(shù)
0
1
2
3
人數(shù)
5
10
20
15
根據(jù)上表信息解答以下問題:
(Ⅰ)從50名學(xué)生中任選兩人,求兩人答對(duì)題目個(gè)數(shù)之和為4或5的概率;
(Ⅱ)從50名學(xué)生中任選兩人,用X表示這兩名學(xué)生答對(duì)題目個(gè)數(shù)之差的絕對(duì)值,求隨機(jī)變量X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高校在2013年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績共分五組,得到頻率分布表如下表所示。

組號(hào)
分組
頻數(shù)
頻率
第一組
[160,165)
5
0.05
第二組
[165,170)
35
0.35
第三組
[170,175)
30
a
第四組
[175,180)
b
0.2
第五組
[180,185)
10
0.1
(Ⅰ)求的值;
(Ⅱ)為了能選出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣的方法抽取12人進(jìn)入第二輪面試,求第3、4、5組中每組各抽取多少人進(jìn)入第二輪的面試;考生李翔的筆試成績?yōu)?78分,但不幸沒入選這100人中,那這樣的篩選方法對(duì)該生而言公平嗎?為什么?
(Ⅲ)在(2)的前提下,學(xué)校決定在12人中隨機(jī)抽取3人接受“王教授”的面試,設(shè)第4組中被抽取參加“王教授”面試的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩人參加普法知識(shí)競賽,共有10道不同的題目,其中選擇題6道,判斷題4道,甲、乙兩人各抽一道(不重復(fù)).
(1)甲抽到選擇題,乙抽到判斷題的概率是多少?
(2)甲、乙二人中至少有一人抽到選擇題的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為了整頓道路交通秩序,某地考慮將對(duì)行人闖紅燈進(jìn)行處罰.為了了解市民的態(tài)度,在普通行人中隨機(jī)選取了200人進(jìn)行調(diào)查,得到如下數(shù)據(jù):

處罰金額x(元)
0
5
10
15
20
會(huì)闖紅燈的人數(shù)y
80
50
40
20
10
若用表中數(shù)據(jù)所得頻率代替概率.現(xiàn)從這5種處罰金額中隨機(jī)抽取2種不同的金額進(jìn)行處罰,在兩個(gè)路口進(jìn)行試驗(yàn).
(Ⅰ)求這兩種金額之和不低于20元的概率;
(Ⅱ)若用X表示這兩種金額之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

因金融危機(jī),某公司的出口額下降,為此有關(guān)專家提出兩種促進(jìn)出口的方案,每種方案都需要分兩年實(shí)施。若實(shí)施方案一,預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的倍、倍、倍的概率分別為、;第二年可以使出口額為第一年的倍、倍的概率分別為、。若實(shí)施方案二,預(yù)計(jì)第一年可以使出口額恢復(fù)到危機(jī)前的倍、倍、倍的概率分別為、;第二年可以使出口額為第一年的倍、倍的概率分別為、。實(shí)施每種方案第一年與第二年相互獨(dú)立。令表示方案實(shí)施兩年后出口額達(dá)到危機(jī)前的倍數(shù)。
(1)寫出的分布列;
(2)實(shí)施哪種方案,兩年后出口額超過危機(jī)前出口額的概率更大?
(3)不管哪種方案,如果實(shí)施兩年后出口額達(dá)不到、恰好達(dá)到、超過危機(jī)前出口額,預(yù)計(jì)利潤分別為萬元、萬元、萬元,問實(shí)施哪種方案的平均利潤更大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

考察某種藥物預(yù)防甲型H1N1流感的效果,進(jìn)行動(dòng)物試驗(yàn),調(diào)查了100個(gè)樣本,統(tǒng)計(jì)結(jié)果為:服用藥的共有60個(gè)樣本,服用藥但患病的仍有20個(gè)樣本,沒有服用藥且未患病的有20個(gè)樣本.
(Ⅰ)根據(jù)所給樣本數(shù)據(jù)完成下面2×2列聯(lián)表;
(Ⅱ)請(qǐng)問能有多大把握認(rèn)為藥物有效?

 
不得流感
得流感
總計(jì)
服藥
 
 
 
不服藥
 
 
 
總計(jì)
 
 
 
(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案