【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.

(1)求||;

(2)已知點D是AB上一點,滿足,點E是邊CB上一點,滿足

①當(dāng)λ=時,求;

②是否存在非零實數(shù)λ,使得?若存在,求出的λ值;若不存在,請說明理由.

【答案】(1);(2)①

【解析】

(1)利用余弦定理求出的長即得||
(2)① 時,分別是的中點,表示出,,利用向量的數(shù)量積計算即可;
②假設(shè)存在非零實數(shù),使得,利用分別表示出

求出 時的值即可.

(1)

(2)①λ=時, =, =

D、E分別是BC,AB的中點,

=+=+,

=+),

=(++

=+++

=﹣×12+×1×2×cos120°+×2×1×cos60°+×22 =

假設(shè)存在非零實數(shù)λ,使得

,得=λ(),

=+=+λ()=λ+(1﹣λ)

,

=+=()+λ(﹣)=(1﹣λ);

=λ(1﹣λ)﹣λ+(1﹣λ)2﹣(1﹣λ)

=4λ(1﹣λ)﹣λ+(1﹣λ)2﹣(1﹣λ)

=﹣3λ2+2λ=0,

解得λ=或λ=0(不合題意,舍去);

即存在非零實數(shù)λ=,使得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},則(RA)∩B的元素的個數(shù)為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高一(1)班參加校生物競賽學(xué)生的成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(1)求高一(1)班參加校生物競賽的人數(shù)及分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;

(2)若要從分數(shù)在[80,100]之間的學(xué)生中任選2人進行某項研究,求至少有1人分數(shù)在[90,100]之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , an>0,且滿足:(an+2)2=4Sn+4n+1,n∈N*
(1)求a1及通項公式an;
(2)若bn=(﹣1)nan , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)求函數(shù)f(x)=xlnx﹣(1﹣x)ln(1﹣x)在0<x≤ 上的最大值;
(2)證明:不等式x1x+(1﹣x)x 在(0,1)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知事件“在矩形ABCD的邊CD上隨機取一點P,使△APB的最大邊是AB”發(fā)生的概率為 ,則 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線 , )的左、右焦點分別為、 , 的直線交雙曲線右支于 兩點, , ,則雙曲線的離心率為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , , 的中點, 的中點,且為正三角形.

)求證: 平面

)若, ,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點分別是Δ的邊的中點連接.現(xiàn)將沿折疊至Δ的位置,連接.記平面 與平面 的交線為 ,二面角大小為.

(1)證明:

(2)證明:

(3)求平面與平面 所成銳二面角大小.

查看答案和解析>>

同步練習(xí)冊答案