【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求||;
(2)已知點D是AB上一點,滿足=λ,點E是邊CB上一點,滿足=λ.
①當(dāng)λ=時,求;
②是否存在非零實數(shù)λ,使得⊥?若存在,求出的λ值;若不存在,請說明理由.
【答案】(1);(2)①②
【解析】
(1)利用余弦定理求出的長即得||;
(2)① 時,分別是的中點,表示出,,利用向量的數(shù)量積計算即可;
②假設(shè)存在非零實數(shù),使得⊥,利用分別表示出 和
求出 時的值即可.
(1) 且
(2)①λ=時, =, =,
∴D、E分別是BC,AB的中點,
∴=+=+,
=(+),
∴=(+)(+)
=+++
=﹣×12+×1×2×cos120°+×2×1×cos60°+×22 =;
②假設(shè)存在非零實數(shù)λ,使得⊥,
由=λ,得=λ(﹣),
∴=+=+λ(﹣)=λ+(1﹣λ);
又=λ,
∴=+=(﹣)+λ(﹣)=(1﹣λ)﹣;
∴=λ(1﹣λ)﹣λ+(1﹣λ)2﹣(1﹣λ)
=4λ(1﹣λ)﹣λ+(1﹣λ)2﹣(1﹣λ)
=﹣3λ2+2λ=0,
解得λ=或λ=0(不合題意,舍去);
即存在非零實數(shù)λ=,使得⊥.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|﹣5+21x﹣4x2<0},B={x∈Z|﹣3<x<6},則(RA)∩B的元素的個數(shù)為( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一(1)班參加校生物競賽學(xué)生的成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:
(1)求高一(1)班參加校生物競賽的人數(shù)及分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;
(2)若要從分數(shù)在[80,100]之間的學(xué)生中任選2人進行某項研究,求至少有1人分數(shù)在[90,100]之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , an>0,且滿足:(an+2)2=4Sn+4n+1,n∈N* .
(1)求a1及通項公式an;
(2)若bn=(﹣1)nan , 求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解答題
(1)求函數(shù)f(x)=xlnx﹣(1﹣x)ln(1﹣x)在0<x≤ 上的最大值;
(2)證明:不等式x1﹣x+(1﹣x)x≤ 在(0,1)上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知事件“在矩形ABCD的邊CD上隨機取一點P,使△APB的最大邊是AB”發(fā)生的概率為 ,則 =( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ( , )的左、右焦點分別為、 ,過 的直線交雙曲線右支于 , 兩點,且 ,若 ,則雙曲線的離心率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點分別是Δ的邊的中點,連接.現(xiàn)將沿折疊至Δ的位置,連接.記平面 與平面 的交線為 ,二面角大小為.
(1)證明:
(2)證明:
(3)求平面與平面 所成銳二面角大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com