【題目】為調(diào)查大學生這個微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從武漢市大學生中隨機抽取100位同學進行了抽樣調(diào)查,結果如下:

微信群數(shù)量

頻數(shù)

頻率

0至5個

0

0

6至10個

30

0.3

11至15個

30

0.3

16至20個

a

c

20個以上

5

b

合計

100

1

(Ⅰ)求a,b,c的值;
(Ⅱ)以這100個人的樣本數(shù)據(jù)估計武漢市的總體數(shù)據(jù)且以頻率估計概率,若從全市大學生(數(shù)量很大)中隨機抽取3人,記X表示抽到的是微信群個數(shù)超過15個的人數(shù),求X的分布列和數(shù)學期望.

【答案】解:(Ⅰ)由已知得:0+30+30+a+5=100,解得a=35,

(Ⅱ)依題意可知,微信群個數(shù)超過15個的概率為p=

X的所有可能取值0,1,2,3.

則P(X=0)= ,

P(X=1)= =

P(X=2)= = ,

P(X=3)= =

其分布列如下:

X

0

1

2

3

P

EX= =


【解析】(Ⅰ)由頻率分布表能求出a,b,c的值.(Ⅱ)依題意可知,微信群個數(shù)超過15個的概率為p= . X的所有可能取值0,1,2,3.分別求出相應的概率,由此能求出X的分布列和EX.
【考點精析】根據(jù)題目的已知條件,利用離散型隨機變量及其分布列的相關知識可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知

1)判斷函數(shù)的奇偶性,并予以證明;

2時求使的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,,平面底面,.分別是的中點,求證:

(Ⅰ)底面;

(Ⅱ)平面;

(Ⅲ)平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,動物園要建造一面靠墻的兩間相同的矩形熊貓居室,如果可供建造圍墻的材料總長是

用寬(單位)表示所建造的每間熊貓居室的面積(單位);

怎么設計才能使所建造的每間熊貓居室面積最大?并求出每間熊貓居室的最大面積?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1=AB=2,AD=1點E,F(xiàn),G分別是DD1 , AB,CC1的中點,則異面直線A1E與GF所成的角是(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.

(1)若直線與圓交于不同的兩點,當時,求的值;

(2)若是直線上的動點,過作圓的兩條切線,切點為,探究:直線是否過定點?若過定點則求出該定點,若不存在則說明理由;

(3)若為圓的兩條相互垂直的弦,垂足為,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)解關于的不等式

(2)若函數(shù)在區(qū)間上的值域為,求實數(shù)的取值范圍;

(3)設函數(shù),求滿足的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,甲、乙是邊長為的兩塊正方形鋼板,現(xiàn)要將甲裁剪焊接成一個正四棱柱,將乙裁剪焊接成一個正四棱錐,使它們的全面積都等于一個正方形的面積(不計焊接縫的面積).

(1)將你的裁剪方法用虛線標示在圖中,并作簡要說明;

(2)試比較你所制作的正四棱柱與正四棱錐體積的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在上的函數(shù)滿足,且.當時, .

(1)求上的解析式;

(2)證明上是減函數(shù);

(3)當取何值時,方程上有解.

查看答案和解析>>

同步練習冊答案