【題目】已知集合,集合,且集合滿足,.

1)求實數(shù)的值;

2)對集合,其中,定義由中的元素構(gòu)成兩個相應(yīng)的集合:,,其中是有序數(shù)對,集合中的元素個數(shù)分別為,若對任意的,總有,則稱集合具有性質(zhì).

①請檢驗集合是否具有性質(zhì),并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合

②試判斷的大小關(guān)系,并證明你的結(jié)論.

【答案】(1)(2)①不具有性質(zhì),具有性質(zhì);,證明見解析

【解析】

1)先求得集合所包含的元素,根據(jù),求得的值.

2)根據(jù)(1)求得,由此求得.

①根據(jù)性質(zhì)的定義,判斷出不具有性質(zhì),具有性質(zhì).根據(jù)集合的定義求得.

②根據(jù)①所求,求得,由此比較出兩者的大小關(guān)系.

1)對于集合,開口向下,對稱軸為,當(dāng),故

對于集合,由,解得,所以.

根據(jù)題意,,所以,解得

經(jīng)檢驗,不符合,故舍去,滿足題意,即.

2)由(1)得,,,.

,故不具有性質(zhì);

中任意元素,故具有性質(zhì);根據(jù)集合的定義,求得

①知,,故.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),

1)解方程

2)令,求的值.

3)若是定義在上的奇函數(shù),且對任意恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地有一企業(yè)2007年建廠并開始投資生產(chǎn),年份代號為7,2008年年份代號為8,依次類推.經(jīng)連續(xù)統(tǒng)計9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合的關(guān)系):

年份代號(

7

8

9

10

11

12

13

14

15

當(dāng)年收入(千萬元)

13

14

18

20

21

22

24

28

29

(Ⅰ)求關(guān)于的線性回歸方程;

(Ⅱ)試預(yù)測2020年該企業(yè)的收入.

(參考公式: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在OAB中,頂點A的坐標(biāo)是(30),頂點B的坐標(biāo)是(1,2),記OAB位于直線左側(cè)圖形的面積為f(t)

1)求函數(shù)f(t)的解析式;

2)設(shè)函數(shù),求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與直線,動直線過定點.

1)若直線與圓相切,求直線的方程;

2)若直線與圓相交于、兩點,點MPQ的中點,直線與直線相交于點N.探索是否為定值,若是,求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,若的子集,把中的所有數(shù)的和稱為容量(規(guī)定空集的容量為0),若的容量為奇(偶)數(shù),則稱的奇(偶)子集,命題①:的奇子集與偶子集個數(shù)相等;命題②:當(dāng)時,的所有奇子集的容量之和與所有偶子集的容量之和相等,則下列說法正確的是(

A.命題①和命題②都成立B.命題①和命題②都不成立

C.命題①成立,命題②不成立D.命題①不成立,命題②成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的極值點的個數(shù);

(2)若恒成立,的最大值

參考數(shù)據(jù):

1.6

1.7

1.8

4.953

5.474

6.050

0.470

0.531

0.588

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)其中,

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)若函數(shù)僅在處有極值,求的取值范圍;

(3)若對于任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點為,過的直線交于兩點,點的坐標(biāo)為.當(dāng)軸時,的面積為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線的斜率分別為、,證明:.

查看答案和解析>>

同步練習(xí)冊答案