直線l1:2x-3y+4=0,l2:3x-2y+1=0的交點P與圓(x-2)2+(y-4)2=5的關(guān)系是(  )
A、點在圓內(nèi)B、點在圓上
C、點在圓外D、沒關(guān)系
考點:點與圓的位置關(guān)系,兩條直線的交點坐標(biāo)
專題:直線與圓
分析:先求出交點P,根據(jù)點和圓的位置關(guān)系即可得到結(jié)論.
解答: 解:由
2x-3y+4=0
3x-2y+1=0
,解得
x=1
y=2
,即交點P(1,2),
圓(x-2)2+(y-4)2=5的圓心為C(2,4),半徑R=
5
,
則|PC|=
(2-1)2+(4-2)2
=
1+4
=
5
=R,
故點P在圓上,
故選:B
點評:本題主要考查直線的交點以及點與圓的位置關(guān)系的判斷,求出交點坐標(biāo)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos4x+2sinxcosx-sin4x.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)x∈[-
π
4
,
π
6
],求f(x-
π
8
)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)的定義域
(1)y=
tanx+1
 
(2)y=
sinx
tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋里裝有30個球,每個球上都記有1到30的一個號碼,設(shè)號碼為n的球的重量為
n2
3
-4n+
44
3
(克),這些球等可能地從袋里取出(不受重量,號碼的影響).
(1)從中任意取出一個球,求其號碼是3的倍數(shù)的概率;
(2)從中任意取出一個球,求重量不大于其號碼的概率;
(3)從中同時任意取出兩個球,求它們重量相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點O,左焦點為F1(-1,0)的橢圓C的左頂點為A,上頂點為B,F(xiàn)1到直線AB的距離為
7
7
|OB|.
(1)求橢圓C的方程;
(2)若橢圓C1方程為:
x2
m2
+
y2
n2
=1(m>n>0),橢圓C2方程為:
x2
m2
+
y2
n2
=λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點M、N,試求弦長|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意實數(shù)x定義:2x為x的冪數(shù),已知a,b,c∈R,若a,b的冪數(shù)之和與a,b之和的冪數(shù)相等,且a,b,c的冪數(shù)之和與a,b,c之和的冪數(shù)也相等,則c的最大值為( 。
A、2-log23
B、log32
C、1
D、log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線(a+2)x+(1-a)y=a•a(a>0),與直線(a-1)x+(2a+3)y+2=0垂直,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P為雙曲線x2-
y2
12
=1上的點,F(xiàn)1、F2是該雙曲線的兩個焦點,且|PF1||PF2|=24,求△PF1F2的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有甲乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀成績后,得到如下不完整的列聯(lián)表:
優(yōu)秀非優(yōu)秀合計
甲班10
乙班30
合計105
已知在全部105人中隨機(jī)抽取1人其成績?yōu)閮?yōu)秀的概率是
2
7

(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為成績與班級有關(guān)系?;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取1人;把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號,且規(guī)定點數(shù)之和為12時抽取人序號為2.試求抽到6或10號的概率.

查看答案和解析>>

同步練習(xí)冊答案