函數(shù)y=sin2x的一個單調(diào)遞增區(qū)間可以是(  )
A、[-
π
4
,
π
4
]
B、[-
π
2
,
π
2
]
C、[
π
2
,
4
]
D、[0,π]
考點(diǎn):正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:由2kπ-
π
2
≤2x≤2kπ+
π
2
解不等式可得函數(shù)的單調(diào)遞增區(qū)間,給k取特值結(jié)合選項可得.
解答: 解:由2kπ-
π
2
≤2x≤2kπ+
π
2
可得kπ-
π
4
≤x≤kπ+
π
4
,k∈Z,
當(dāng)k=0時,可得函數(shù)的一個單調(diào)遞增區(qū)間為:[-
π
4
,
π
4
]
故選:A
點(diǎn)評:本題考查正弦函數(shù)的單調(diào)性,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若一個幾何體的三視圖如圖,則此幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=lg|x|的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
lnx
x
的單調(diào)遞增區(qū)間是( 。
A、(e,+∞)
B、(-∞,e)
C、(e-1,+∞)
D、(0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+
1
x
的值域是( 。
A、(1,+∞)
B、(-∞,2)
C、(-∞,+∞)
D、(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x||x-2|≤3,x∈R},B={y|y=lg(x-1)},則A∩B=( 。
A、[-1,1)
B、(-∞,1)
C、[-1,5]
D、(1,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x-2,x≤1
2+log2x,x>1
,則函數(shù)f(x)的零點(diǎn)為( 。
A、
1
4
和1
B、-4和0
C、
1
4
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的方程為x2+y2=4,向量
OA
=(1,0),
OB
=(3,0),點(diǎn)P是圓O上任意一點(diǎn),那么
PA
PB
的取值范圍是(  )
A、(-1,11)
B、(-1,15)
C、[-5,11]
D、[-1,15]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,則“a=-2”是“直線l1:ax+2y-1=0與直線l2:x+(a+1)y+4=0”垂直的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案