若集合A={x||x-2|≤3,x∈R},B={y|y=lg(x-1)},則A∩B=(  )
A、[-1,1)
B、(-∞,1)
C、[-1,5]
D、(1,5]
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:求出A中x的范圍確定出A,求出B中y的范圍確定出B,找出A與B的交集即可.
解答: 解:由A中不等式變形得:-3≤x-2≤3,
解得:-1≤x≤5,即A=[-1,5];
由B中y=lg(x-1)∈R,得到B=R,
則A∩B=[-1,5].
故選:C.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}(n∈N*)中,如果存在ak使得“ak<ak-1,且ak<ak+1”成立(其中k≥2,k∈N*),則稱ak為{an}的一個(gè)“谷值”.
①若an=n2-10n+1,則{an}的“谷值”為
 

②若an=
-2n2-tn , n<3
-tn-8, n≥3
且{an}存在“谷值”,則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是兩條不同的直線,α,β,γ是三個(gè)不同的平面.有下列四個(gè)命題:
①若m?β,α⊥β,則m⊥α
②若α∥β,m?α,則m∥β
③若n⊥α,n⊥β,m⊥α則m⊥β
④若α⊥γ,β⊥γ,則α⊥β
其中正確命題的序號(hào)是( 。
A、①③B、①②C、③④D、②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在(1-x)20的展開式中,如果第4r項(xiàng)和第r+2項(xiàng)的二項(xiàng)式系數(shù)相等,則r的值為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin2x的一個(gè)單調(diào)遞增區(qū)間可以是( 。
A、[-
π
4
π
4
]
B、[-
π
2
π
2
]
C、[
π
2
4
]
D、[0,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P為橢圓上一點(diǎn),且∠PF1F2=30°∠PF2F1=45°,其中F1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn),則橢圓的離心率e的值等于( 。
A、
(2+
2
)(1+
3
)
2
B、
(2-
2
)(1+
3
)
2
C、
(2+
2
)(
3
-1)
2
D、
(2-
2
)(
3
-1)
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,下底BC長(zhǎng)為3,底角C為45°,高為a,E為上底AD的中點(diǎn),F(xiàn)為折線段C-D-A上的動(dòng)點(diǎn),設(shè)
BE
BF
的最小值為g(a),若關(guān)于a的方程g(a)=ka-1有兩個(gè)不相等的實(shí)根,則實(shí)數(shù)k的取值范圍為( 。
A、(
7
2
,
11
3
B、(
7
2
,+∞)
C、(
11
3
,+∞)
D、(
13
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A、14B、15C、16D、17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集為R,A={x|y=
1
x2-2x
},B={x||x-2|<1},則(∁RA)∩B=(  )
A、[1,2]
B、(1,2]
C、[0,3]
D、(0,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案