【題目】某校在一次期末數(shù)學(xué)測(cè)試中,為統(tǒng)計(jì)學(xué)生的考試情況,從學(xué)校的2000名學(xué)生中隨機(jī)抽取50名學(xué)生的考試成績(jī),被測(cè)學(xué)生成績(jī)?nèi)拷橛?5分到145分之間(滿分150分),將統(tǒng)計(jì)結(jié)果按如下方式分成八組:第一組,,第二組,,第八組,,如圖是按上述分組方法得到的頻率分布直方圖的一部分.

(1)求第七組的頻率,并完成頻率分布直方圖;

(2)用樣本數(shù)據(jù)估計(jì)該校的2000名學(xué)生這次考試成績(jī)的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表該組數(shù)據(jù)平均值);

(3)若從樣本成績(jī)屬于第六組和第八組的所有學(xué)生中隨機(jī)抽取2名,求他們的分差的絕對(duì)值小于10分的概率.

【答案】(1),繪圖見(jiàn)解析;(2);(3)

【解析】

(1)由頻率分布直方圖可得:各小矩形的高之和為0.1,運(yùn)算可得解;

(2)由頻率分布直方圖中平均數(shù)的求法即可得解;

(3)樣本成績(jī)屬于第六組的有人,樣本成績(jī)屬于第八組的有人,則隨機(jī)抽取2名,

基本事件總數(shù)為,他們的分差的絕對(duì)值小于10分包含的基本事件個(gè)數(shù)為,再利用古典概型概率公式運(yùn)算即可.

解:(1)由頻率分布直方圖得第七組的頻率為:

完成頻率分布直方圖如下:

(2)用樣本數(shù)據(jù)估計(jì)該校的2000名學(xué)生這次考試成績(jī)的平均分為:

.

(3)樣本成績(jī)屬于第六組的有人,樣本成績(jī)屬于第八組的有人,

從樣本成績(jī)屬于第六組和第八組的所有學(xué)生中隨機(jī)抽取2名,

基本事件總數(shù),

他們的分差的絕對(duì)值小于10分包含的基本事件個(gè)數(shù),

故他們的分差的絕對(duì)值小于10分的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的可導(dǎo)函數(shù)滿足,記的導(dǎo)函數(shù)為,當(dāng)時(shí)恒有.,則m的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示在四棱錐中,下底面為正方形,平面平面為以為斜邊的等腰直角三角形,,若點(diǎn)是線段上的中點(diǎn).

1)證明平面.

2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系,直線過(guò)點(diǎn),且傾斜角為,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.

(1)求直線的參數(shù)方程和圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與圓交于兩點(diǎn),若,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), ,其中.

(1)當(dāng)時(shí),求函數(shù)的值域;

(2)若對(duì)任意,均有,求的取值范圍;

(3)當(dāng)時(shí),設(shè),若的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有四座城市、,其中的正東方向,且與相距,的北偏東方向,且與相距;的北偏東方向,且與相距,一架飛機(jī)從城市出發(fā)以的速度向城市飛行,飛行了,接到命令改變航向,飛向城市,此時(shí)飛機(jī)距離城市有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P到直線y=﹣4的距離比點(diǎn)P到點(diǎn)A0,1)的距離多3

(1)求點(diǎn)P的軌跡方程;

(2)經(jīng)過(guò)點(diǎn)Q0,2)的動(dòng)直線l與點(diǎn)P的軌交于M,N兩點(diǎn),是否存在定點(diǎn)R使得∠MRQ=∠NRQ?若存在,求出點(diǎn)R的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓,稱圓心在坐標(biāo)原點(diǎn)O,半徑為的圓是橢圓C伴隨圓,已知橢圓C的兩個(gè)焦點(diǎn)分別是.

1)若橢圓C上一動(dòng)點(diǎn)滿足,求橢圓C及其伴隨圓的方程;

2)在(1)的條件下,過(guò)點(diǎn)作直線l與橢圓C只有一個(gè)交點(diǎn),且截橢圓C伴隨圓所得弦長(zhǎng)為,求P點(diǎn)的坐標(biāo);

3)已知,是否存在a,b,使橢圓C伴隨圓上的點(diǎn)到過(guò)兩點(diǎn)的直線的最短距離.若存在,求出a,b的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)證明在區(qū)間內(nèi)有且僅有唯一實(shí)根;

(2)記在區(qū)間內(nèi)的實(shí)根為,函數(shù),若方程在區(qū)間有兩不等實(shí)根,證明

查看答案和解析>>

同步練習(xí)冊(cè)答案