數(shù)列{an}的前n項(xiàng)的和Sn,an=1+2+22+…+2n-1,則sn=
 
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知得an=1+2+22+…+2n-1=
1-2n
1-2
=2n-1,由此能求出Sn=2+22+23+…+2n-n,由此能求出數(shù)列的前n項(xiàng)和的求法.
解答: 解:數(shù)列{an}的前n項(xiàng)的和Sn,
an=1+2+22+…+2n-1=
1-2n
1-2
=2n-1,
∴Sn=2+22+23+…+2n-n
=
2(2-2n)
1-2
-n
=2n+1-2-n.
故答案為:2n+1-2-n.
點(diǎn)評:本題考查數(shù)列的前n項(xiàng)和的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意分組求和法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中:
①A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②過定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,P是AB中點(diǎn),則動(dòng)點(diǎn)P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn).其中正確命題的個(gè)數(shù)(  )
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義域?yàn)镽,周期為4的奇函數(shù),且當(dāng)x∈[0,2]時(shí),f(x)=|x-1|-1,則方程f(x)=log4x根的個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓的焦點(diǎn)坐標(biāo)為(4,0),(-4,0),橢圓上一點(diǎn)到兩焦點(diǎn)的距離之和為10,則橢圓的標(biāo)準(zhǔn)方程為( 。
A、
x2
16
+
y2
9
=1
B、
x2
25
+
y2
9
=1
C、
x2
9
+
y2
25
=1
D、
x2
25
+
y2
16
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表給出了某校500名12歲男孩中用隨機(jī)抽樣得出的120人的身高(單位cm)
區(qū)間界限[122,126)[126,130)[130,134)[134,138)[138,142)[142,146)
人數(shù)5810223320 
區(qū)間界限[146,150)[150,154)[154,158) 
人數(shù)1165
(1)列出樣本頻率分布表﹔畫出頻率分布直方圖;
(2)估計(jì)身高小于134cm的人數(shù)占總?cè)藬?shù)的百分比;
(3)并根據(jù)直方圖計(jì)算這120人的身高平均數(shù),眾數(shù),中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:(x+2)2+y2=4,過點(diǎn)P(-1,0)作圓M的互相垂直的兩條弦AB,CD,則這兩條弦長之和的最大值為( 。
A、2
14
B、8
C、4+2
3
D、4
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax-1(a為常數(shù)),曲線y=f(x)在與y軸的交點(diǎn)A處的切線斜率為-1.
(Ⅰ)求a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)x>0時(shí),ex>x2+1;
(Ⅲ)證明:當(dāng)n∈N*時(shí),1+
1
2
+
1
3
+…+
1
n
>ln
(n+1)3
(3e)n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)家庭有兩個(gè)小孩,則兩個(gè)孩子都是女孩的概率為(  )
A、
1
4
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
px+3
x2+2
(其中p為常數(shù),x∈[-2,2])為偶函數(shù).
(1)求p的值; (2)如果f(1-m)<f(2m),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案